Solid Mechanics and Vehicle Conceptual Design

Digital element modelling and analysis of 2.5D woven shallow cross bending composites

  • Hongyue WANG ,
  • Bing WANG ,
  • Guodong FANG ,
  • Songhe MENG
Expand
  • National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,Harbin Institute of Technology,Harbin 150001,China
E-mail: mengsh@hit.edu.cn

Received date: 2022-05-20

  Revised date: 2022-06-20

  Accepted date: 2022-07-21

  Online published: 2022-08-03

Supported by

National Natural Science Foundation of China(12090034);China Postdoctoral Science Foundation(2021M701009);Natural Science Foundation of Heilongjiang Province of China(YQ2021A004)

Abstract

2.5D woven shallow cross bending composites have been widely used in aerospace structures because of their excellent mechanical properties and structural integrity. Correctly characterizing the fiber structure with extrusion or deflection deformation is the key to studying the materials properties in the micro- and meso-scale. The digital element method is an effective way to simulate the internal fiber bundle shape of the woven composites; however, the obtained results depend on the selection of the simulation parameters. Based on the Micro Computed Tomography(Micro-CT) observation of 2.5D woven shallow cross bending SiO2f/ SiO2 composites, a digital element finite element model of the materials is established using the Abaqus software. The temperature load and boundary constraints are applied to the simulation of the fabric deformation process, and the digital element characteristic information after fabric deformation is extracted. Combining the central path and cross-section shape discretization algorithm of the fiber bundles, we obtain the structural shape of the fiber bundles. Analysis of the influences of the selected element type, the elastic properties of the digital element, the number of elements and the friction coefficient on the simulation results determines the main selection principles of the simulation parameters. A geometric model that can reflect the yarn deformation characteristics of the woven composites is obtained, which is consistent with the CT observation results. This method is universal and can guide the digital element modelling of similar fabric composites.

Cite this article

Hongyue WANG , Bing WANG , Guodong FANG , Songhe MENG . Digital element modelling and analysis of 2.5D woven shallow cross bending composites[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(9) : 227478 -227478 . DOI: 10.7527/S1000-6893.2023.27478

References

1 赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报202142(6): 024126.
  ZHAO C W, MAO J K, TU Z C, et al. Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica202142(6): 024126 (in Chinese).
2 GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008: 2682.
3 汪星明, 邢誉峰. 三维编织复合材料研究进展[J]. 航空学报201031(5): 914-927.
  WANG X M, XING Y F. Developments in research on 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica201031(5): 914-927 (in Chinese).
4 关天茹. 2.5D编织石英/SiO2陶瓷基复合材料细观模型构建与实验验证[D]. 南京: 南京航空航天大学, 2012.
  GUAN T R. Micro geometry and mechanical model and experimental study of 2.5D braided quartz/SiO2 ceramic matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
5 KARAMOV R, MARTULLI L M, KERSCHBAUM M, et al. Micro-CT based structure tensor analysis of fibre orientation in random fibre composites versus high-fidelity fibre identification methods[J]. Composite Structures2020235: 111818.
6 MEHDIKHANI M, STRAUMIT I, GORBATIKH L, et al. Detailed characterization of voids in multidirectional carbon fiber/epoxy composite laminates using X-ray micro-computed tomography[J]. Composites Part A: Applied Science and Manufacturing2019125: 105532.
7 MADRA A, CAUSSE P, TROCHU F, et al. Stochastic characterization of textile reinforcements in composites based on X-ray microtomographic scans[J]. Composite Structures2019224: 111031.
8 SHERBURN M. Geometric and mechanical modelling of textiles[D]. Nottingham: The University of Nottingham, 2007.
9 LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research2011331: 44-47.
10 VERPOEST I, LOMOVE S V Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis[J]. Composites Science and Technology200565(15-16): 2563-2574.
11 BLACKLOCK M, BALE H, BEGLEY M, et al. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model[J]. Journal of the Mechanics and Physics of Solids201260(3): 451-470.
12 RINALDI R G, BLACKLOCK M, BALE H, et al. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations[J]. Journal of the Mechanics and Physics of Solids201260(8): 1561-1581.
13 STRAUMIT I, LOMOV S V, WEVERS M. Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data[J]. Composites Part A: Applied Science and Manufacturing201569: 150-158.
14 FANG G D, CHEN C H, YUAN S G, et al. Micro-tomography based geometry modeling of three-dimensional braided composites[J]. Applied Composite Materials201825(3): 469-483.
15 HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling[J]. Composites Part A: Applied Science and Manufacturing2019124: 105481.
16 MARTíN-HERRERO J, GERMAIN C H. Microstructure reconstruction of fibrous C/C composites from X-ray microtomography[J]. Carbon200745(6): 1242-1253.
17 YAMAMOTO S, MATSUOKA T. A method for dynamic simulation of rigid and flexible fibers in a flow field[J]. The Journal of Chemical Physics199398(1): 644-650.
18 WIEST J M, WEDGEWOOD L E, BIRD R B. On coil-stretch transitions in dilute polymer solutions[J]. The Journal of Chemical Physics198990(1): 587-594.
19 LIU Y Z, XUE Y. Some aspects of research on mechanics of thin elastic rod[J]. Journal of Physics: Conference Series2013448: 012001.
20 WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science and Technology200161(2): 311-319.
21 ZHOU G M, SUN X K, WANG Y Q. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology200464(2): 239-244.
22 MIAO Y Y, ZHOU E, WANG Y Q, et al. Mechanics of textile composites: micro-geometry[J]. Composites Science and Technology200868(7-8): 1671-1678.
23 HUANG L J, WANG Y Q, MIAO Y Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3-D woven textile micro-geometry[J]. Composite Structures2013106: 417-425.
24 GREEN S D, LONG A C, SAID B S F EL, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures2014108: 747-756.
25 GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures2014118: 284-293.
26 SAID B EL, GREEN S D, HALLETT S R. Kinematic modelling of 3D woven fabric deformation for structural scale features[J]. Composites Part A: Applied Science and Manufacturing201457: 95-107.
27 SAID B EL, IVANOV D, LONG A C, et al. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation[J]. Journal of the Mechanics and Physics of Solids201688: 50-71.
28 DURVILLE D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[J]. International Journal of Material Forming20103(2): 1241-1251.
29 LIU C, XIE J B, SUN Y, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures2019230: 111552.
30 BERGOU M, WARDETZKY M, ROBINSON S, et al. Discrete elastic rods[C]∥SIGGRAPH '08: ACM SIGGRAPH 2008 papers. New York: ACM, 2008, doi: 10.1145/1360612.1360662 .
Outlines

/