ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Attitude control scheme for morphing vehicles with output error constraints and input saturation
Received date: 2023-03-29
Revised date: 2023-04-28
Accepted date: 2023-05-19
Online published: 2023-05-22
The attitude control problem of hypersonic morphing vehicles considering output error constraints and input saturation is investigated. Firstly, the dynamic model with uncertainties is established, and the input-saturation-oriented control system is derived based on hyperbolic tangent function and auxiliary system. The transformed error is then designed for the system to facilitate output error constraints under more relaxed convergency conditions. Then, the Fuzzy Disturbance Observer (FDO) is designed based on fuzzy logic system and finite-time theory, which enables the estimation error of disturbance converging to the origin in finite time. Subsequently, the back-stepping control scheme is proposed and the convergency of the closed-loop system with output error constraints and input saturation is ensured via Lyapunov synthesis. Finally, numerical simulation results are presented to demonstrate the effectiveness of the designed control scheme.
Haolan CHEN , Peng WANG , Guojian TANG . Attitude control scheme for morphing vehicles with output error constraints and input saturation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528762 -528762 . DOI: 10.7527/S1000-6893.2023.28762
1 | LI D C, ZHAO S W, RONCH A DA, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62. |
2 | WANG X R, MKHOYAN T, MKHOYAN I, et al. Seamless active morphing wing simultaneous gust and maneuver load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(9): 1649-1662. |
3 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
4 | TEE K P, GE S S, TAY E H. Barrier Lyapunov Functions for the control of output-constrained nonlinear systems[J]. Automatica, 2009, 45(4): 918-927. |
5 | WANG Z W, LIANG B, SUN Y C, et al. Adaptive fault-tolerant prescribed-time control for teleoperation systems with position error constraints[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4889-4899. |
6 | DAI P, FENG D Z, ZHAO J Q, et al. Asymmetric integral barrier Lyapunov function-based dynamic surface control of a state-constrained morphing waverider with anti-saturation compensator[J]. Aerospace Science and Technology, 2022, 131: 107975. |
7 | LIU W K, WEI Y Y, DUAN G R. Barrier Lyapunov function-based integrated guidance and control with input saturation and state constraints[J]. Aerospace Science and Technology, 2019, 84: 845-855. |
8 | BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. |
9 | WEI C S, CHEN Q F, LIU J, et al. An overview of prescribed performance control and its application to spacecraft attitude system[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2021, 235(4): 435-447. |
10 | GUO Z Y, HENRY D, GUO J G, et al. Control for systems with prescribed performance guarantees: An alternative interval theory-based approach[J]. Automatica, 2022, 146: 110642. |
11 | TARBOURIECH S, TURNER M. Anti-windup design: An overview of some recent advances and open problems[J]. IET Control Theory & Applications, 2009, 3(1): 1-19. |
12 | 郭行, 符文星, 付斌, 等. 吸气式高超声速飞行器巡航段突防弹道规划[J]. 宇航学报, 2017, 38(3): 287-295. |
GUO H, FU W X, FU B, et al. Penetration trajectory programming for air-breathing hypersonic vehicles during the cruise phase[J]. Journal of Astronautics, 2017, 38(3): 287-295 (in Chinese). | |
13 | 许闯,吴宝林. 输入饱和下多航天器分布式固定时间输出反馈姿态协同控制[J]. 航空学报, 2023, 44(10): 327465. |
XU C, WU B L. Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 327465 (in Chinese). | |
14 | CHEN H L, ZHOU J, ZHOU M, et al. Nussbaum gain adaptive control scheme for moving mass reentry hypersonic vehicle with actuator saturation[J]. Aerospace Science and Technology, 2019, 91: 357-371. |
15 | MA Y F, WU W, G?RGES D, et al. Event-triggered feedback control for discrete-time piecewise affine systems subject to input saturation[J]. Nonlinear Dynamics, 2019, 95(3): 2353-2365. |
16 | BU X W, JIANG B X, FENG Y A. Hypersonic tracking control under actuator saturations via readjusting prescribed performance functions[J]. ISA Transactions, 2023, 134: 74-85. |
17 | QIN H D, CHEN X Y, SUN Y C. Adaptive state-constrained trajectory tracking control of unmanned surface vessel with actuator saturation based on RBFNN and tan-type barrier Lyapunov function[J]. Ocean Engineering, 2022, 253: 110966. |
18 | HU Q L, WANG C L, LI Y, et al. Adaptive control for hypersonic vehicles with time-varying faults[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1442-1455. |
19 | YAN K, CHEN M, WU Q X, et al. Robust adaptive compensation control for unmanned autonomous helicopter with input saturation and actuator faults[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2299-2310. |
20 | 董朝阳, 江未来, 王青. 变翼展飞行器平滑切换LPV鲁棒H∞控制[J]. 宇航学报, 2015, 36(11): 1270-1278. |
DONG C Y, JIANG W L, WANG Q. Smooth switching LPV robust H∞ control for variable-span vehicle[J]. Journal of Astronautics, 2015, 36(11): 1270-1278 (in Chinese). | |
21 | 曹立佳, 张胜修, 李晓峰, 等. 折叠翼飞行器发射段鲁棒非线性控制系统设计[J]. 航空学报, 2011, 32(10): 1879-1887. |
CAO L J, ZHANG S X, LI X F, et al. Robust nonlinear control system design for folding-wing aerial vehicles during launching time[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1879-1887 (in Chinese). | |
22 | UTKIN V. On convergence time and disturbance rejection of super-twisting control[J]. IEEE Transactions on Automatic Control, 2013, 58(8): 2013-2017. |
23 | CHEN H L, WANG P, TANG G J. Fuzzy disturbance observer based fixed-time sliding mode control for hypersonic morphing vehicles with uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, PP(99): 1-10. |
24 | PU Z Q, YUAN R Y, YI J Q, et al. A class of adaptive extended state observers for nonlinear disturbed systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5858-5869. |
25 | NAKAO M, OHNISHI K, MIYACHI K. A Robust decentralized joint control based on interference estimation[C]∥ Proceedings of 1987 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2003: 326-331. |
26 | GINOYA D, SHENDGE P D, PHADKE S B. Sliding mode control for mismatched uncertain systems using an extended disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1983-1992. |
27 | AL-JODAH A, SHIRINZADEH B, GHAFARIAN M, et al. A fuzzy disturbance observer based control approach for a novel 1-DOF micropositioning mechanism[J]. Mechatronics, 2020, 65: 102317. |
28 | 梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(S2): 724274. |
LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724274 (in Chinese). | |
29 | BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5): 535-553. |
30 | QIAN C J, LIN W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization[J]. Systems & Control Letters, 2001, 42(3): 185-200. |
31 | ZUO Z Y, TIE L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Systems Science, 2016, 47(6): 1366-1375. |
32 | BAO J L, WANG H Q, XIAOPING LIU P. Adaptive finite-time tracking control for robotic manipulators with funnel boundary[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(5): 575-589. |
/
〈 |
|
〉 |