ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Review of inertial guidance instrumental error separation techniques
Received date: 2023-02-21
Revised date: 2023-04-11
Accepted date: 2022-05-17
Online published: 2023-05-19
Supported by
National Level Project
Inertial guidance instrumental error separation is the key to verify the space-ground consistency of inertial guidance systems and the accuracy identification test of missile weapons, which provides important support for the accuracy assessment and subsequent improvement of missile weapons. Although the problem of instrumental error separation of platform inertial guidance systems used in traditional ballistic missiles has been fully studied, with the development of new inertial guidance devices and the development requirements for hypersonic vehicles and other new equipments, new challenges have been posed for inertial guidance instrumental error separation. This paper analyzes the development status and characteristics of inertial guidance instrumental error separation from three aspects: launch conditions, required elements and inertial guidance mode. Besides, it analyzes and prospects the development trend under new requirements.
Shifeng ZHANG , Jun LI , Huabo YANG . Review of inertial guidance instrumental error separation techniques[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528590 -528590 . DOI: 10.7527/S1000-6893.2023.28590
1 | 张士峰, 杨华波, 蔡洪. 惯性制导武器精度分析与评估[M]. 长沙: 国防科技大学出版社, 2008: 21-72. |
ZHANG S F, YANG H B, CAI H. Inertial guidance weapon precision analysis and evaluation[M]. Changsha: National University of Defense Technology Press, 2008: 21-72 (in Chinese). | |
2 | 李健. 制导工具误差对落点精度影响分析及精度评定[D]. 长沙: 国防科学技术大学, 2007: 31-37. |
LI J. An analysis of the effect of guidance instrument error on fall point accuracy and accuracy estimate method[D]. Changsha: National University of Defense Technology, 2007: 31-37 (in Chinese). | |
3 | 张金槐. 远程火箭精度分析与评估[M]. 长沙: 国防科技大学出版社, 1995: 65-72. |
ZHANG J H. Accuracy analysis and evaluation of long-range rocket[M]. Changsha: National University of Defense Technology Press, 1995: 65-72 (in Chinese). | |
4 | CARR J G, SCOTT L D. The testing of airborne inertial navigation systems[J]. Journal of Navigation, 1967, 20(4): 405-431. |
5 | 蒋小勇. 潜射弹道导弹弹艇误差分离技术研究[D]. 长沙: 国防科学技术大学, 2008: 17-32. |
JIANG X Y. Research on separation of missile and submarine errors in submarine-launched ballistic missile[D]. Changsha: National University of Defense Technology, 2008: 17-32 (in Chinese). | |
6 | 姚静, 段晓君, 周海银. 海态制导工具系统误差建模与参数估计[J]. 弹道学报, 2005, 17(1): 33-39. |
YAO J, DUAN X J, ZHOU H Y. Modeling and parameters estimation of marine guidance instrumentation systematic error[J]. Journal of Ballistics, 2005, 17(1): 33-39 (in Chinese). | |
7 | 杨华波, 张士峰, 胡正东, 等. 海基导弹初始误差分离建模与参数估计[J]. 系统工程与电子技术, 2007, 29(6): 931-933, 937. |
YANG H B, ZHANG S F, HU Z D, et al. Modeling and parameter estimation for initial launched parameter error of warship-missile[J]. Systems Engineering and Electronics, 2007, 29(6): 931-933, 937 (in Chinese). | |
8 | 杨华波, 张士峰, 蔡洪, 等. 考虑初始误差的制导工具误差分离建模与参数估计[J]. 宇航学报, 2007, 28(6): 1638-1642. |
YANG H B, ZHANG S F, CAI H, et al. Modeling and parameters estimation of guidance instrumentation systematic error and initial launched parameters error for marine-missile[J]. Journal of Astronautics, 2007, 28(6): 1638-1642 (in Chinese). | |
9 | 郑小兵, 董景新, 孟令晶, 等. 潜地导弹初始定位误差估算方法[J]. 中国惯性技术学报, 2009, 17(2): 127-131. |
ZHENG X B, DONG J X, MENG L J, et al. Estimation of initial positioning error in submarine-to-ground missile[J]. Journal of Chinese Inertial Technology, 2009, 17(2): 127-131 (in Chinese). | |
10 | 郑小兵, 董景新, 孟令晶, 等. 基于遥外差数据估算初始定位误差的新方法[J]. 中国惯性技术学报, 2010, 18(6): 680-685. |
ZHENG X B, DONG J X, MENG L J, et al. New method to estimate initial positioning error based on telemetry-tracking deviation data[J]. Journal of Chinese Inertial Technology, 2010, 18(6): 680-685 (in Chinese). | |
11 | 张仲毅, 张耐民, 荣晶晶, 等. 动基座发射飞行器初始误差分离线性建模及仿真[J]. 导弹与航天运载技术, 2013(4): 43-47. |
ZHANG Z Y, ZHANG N M, RONG J J, et al. Linear modeling and simulation for initial error separation of vehicle launched on moving base[J]. Missiles and Space Vehicles, 2013(4): 43-47 (in Chinese). | |
12 | 周萱影, 王正明, 李冬, 等. 线性模型的海基制导系统误差分离方法性能分析[J]. 国防科技大学学报, 2019, 41(3): 179-186. |
ZHOU X Y, WANG Z M, LI D, et al. Performance analysis on linear model of sea-based guidance systematic error separation method[J]. Journal of National University of Defense Technology, 2019, 41(3): 179-186 (in Chinese). | |
13 | 高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012: 91-141. |
GAO Z Y. Inertial navigation system technology[M]. Beijing: Tsinghua University Press, 2012: 91-141 (in Chinese). | |
14 | BRITTING K R. Inertial navigation systems analysis[M]. New York: Wiley-Interscience, 1971. |
15 | 耿靖童. 典型惯性器件误差机理与抑制方法研究[D]. 吉林: 东北电力大学, 2019: 12-17. |
GENG J T. Research on error mechanism and suppression method of typical inertial devices[D]. Jilin: Northeast Dianli University, 2019: 12-17 (in Chinese). | |
16 | 吴梦旋. 惯性仪表高阶误差模型系数在精密离心机上的测试方法[D]. 哈尔滨: 哈尔滨工业大学, 2017: 10-57. |
WU M X. Test methods for high order error model coefficients of inertial instrument on precision centrifuge[D]. Harbin: Harbin Institute of Technology, 2017: 10-57 (in Chinese). | |
17 | 孙闯, 任顺清. 陀螺加速度计交叉二次项的线振动台测试方法[J]. 导航定位与授时, 2017, 4(5): 105-110. |
SUN C, REN S Q. Measurement method for cross-quadratic coefficient of PIGA on linear vibration table[J]. Navigation Positioning and Timing, 2017, 4(5): 105-110 (in Chinese). | |
18 | 孙闯, 任顺清, 师少龙, 等. 陀螺加速度计线振动台进动整周测试方法[J]. 中国惯性技术学报, 2016, 24(5): 672-676. |
SUN C, REN S Q, SHI S L, et al. Measurement method for PIGA precession during integer periods on linear vibration table[J]. Journal of Chinese Inertial Technology, 2016, 24(5): 672-676 (in Chinese). | |
19 | 刘建波, 魏宗康, 陈东生. 石英加速度计二次项误差系数显著性分析[J]. 导弹与航天运载技术, 2013(1): 45-48. |
LIU J B, WEI Z K, CHEN D S. Prominence analysis of quartz flexible pendulous accelerometer’s quadratic coefficient[J]. Missiles and Space Vehicles, 2013(1): 45-48 (in Chinese). | |
20 | 高鑫, 严吉中, 谢良平, 等. 光纤陀螺的角加速度误差分析与实验研究[J]. 压电与声光, 2013, 35(6): 821-823, 832. |
GAO X, YAN J Z, XIE L P, et al. Analysis and experimental research on angular acceleration error of FOG[J]. Piezoelectrics & Acoustooptics, 2013, 35(6): 821-823, 832 (in Chinese). | |
21 | 孙伟, 徐爱功, 孙枫. 惯导系统中石英加速度计的动态测试方法研究[J]. 传感器与微系统, 2012, 31(10): 61-63, 67. |
SUN W, XU A G, SUN F. Research on dynamic testing method for quartz accelerometer of INS[J]. Transducer and Microsystem Technologies, 2012, 31(10): 61-63, 67 (in Chinese). | |
22 | 刘建波, 魏宗康. 石英加速度计误差系数显著性分析[J]. 中国惯性技术学报, 2011, 19(5): 615-620. |
LIU J B, WEI Z K. Significance analysis of QFPA’s error model’s coefficients[J]. Journal of Chinese Inertial Technology, 2011, 19(5): 615-620 (in Chinese). | |
23 | GU Q T. Experimental study on random error modeling for fiber optic gyros[J]. Chinese Journal of Sensors and Actuators, 2008, 21(9): 1514-1518. |
24 | 彭云辉, 缪栋, 王跃钢, 等. 过载振动复合环境下液浮积分陀螺仪误差建模与仿真[J]. 电光与控制, 2007, 14(2): 138-141. |
PENG Y H, MIAO D, WANG Y G, et al. Error modeling and simulation of liquid floated integral gyro under overloading-vibrating environment[J]. Electronics Optics & Control, 2007, 14(2): 138-141 (in Chinese). | |
25 | 朱振乾. 利用飞行试验数据对惯性制导系统误差进行分析鉴定的方法[J]. 导弹与航天运载技术, 1994(2): 18-28. |
ZHU Z Q. The methods of analysis and evaluation for errors of inertial guidance system in flight test[J]. Missiles and Space Vehicles, 1994(2): 18-28 (in Chinese). | |
26 | 贺栋, 严小军, 朱嘉婧, 等. 陀螺加速度计在线振动台上的二次项分离方法[J]. 传感器与微系统, 2020, 39(10): 24-26, 30. |
HE D, YAN X J, ZHU J J, et al. Method of quadratic term coefficient separation of pendulous integrating gyro-accelerometer on linear vibrator[J]. Transducer and Microsystem Technologies, 2020, 39(10): 24-26, 30 (in Chinese). | |
27 | 邹仲贤. 基于线振动的陀螺仪二次项误差测试方法[D]. 哈尔滨: 哈尔滨工业大学, 2018: 12-38. |
ZOU Z X. Vibration test methods of acceleration-squared-sensitive coefficients of gyroscopic drift error[D]. Harbin: Harbin Institute of Technology, 2018: 12-38 (in Chinese). | |
28 | 贺栋. 陀螺加速度计在线振动台上的测试技术研究[D]. 北京: 中国运载火箭技术研究院, 2019: 4-35. |
HE D. Testing research of pendulous integrating gyro accelerometer on low-frequency linear vibrator[D]. Beijing: China Academy of Launch Vehicle Technology, 2019: 4-35 (in Chinese). | |
29 | WENG J, BIAN X Y, KOU K, et al. Optimization of ring laser gyroscope bias compensation algorithm in variable temperature environment[J]. Sensors, 2020, 20(2): 377. |
30 | YANG C, CAI Y W, XIN C J, et al. Research on temperature error compensation method of vehicle-mounted laser gyro SINS[J]. Journal of Physics: Conference Series, 2021, 1885(4): 042020. |
31 | SONG Y H, LU L C, WANG G, et al. Study of modeling and temperature compensation technology of airborne FOG components[C]∥International Conference on Mechanisms and Robotics (ICMAR 2022). San Francisco: SPIE, 2022: 235-242. |
32 | CAO Y, XU W Y, LIN B, et al. Long short-term memory network of machine learning for compensating temperature error of a fiber optic gyroscope independent of the temperature sensor[J]. Applied Optics, 2022, 61(28): 8212. |
33 | NIKIFOROVSKII D A, DEINEKA I G, SHARKOV I A, et al. A method for fiber optic gyroscope temperature drift compensation using correlations between the readings of the gyroscope and several temperature sensors[J]. Gyroscopy and Navigation, 2022, 13(2): 105-109. |
34 | 陈东生, 魏宗康, 房建成. 验证石英加速度计误差模型的火箭橇试验[J]. 中国惯性技术学报, 2009, 17(2): 236-239, 245. |
CHEN D S, WEI Z K, FANG J C. Verifying QFPA’s error model based on rocket sled testing[J]. Journal of Chinese Inertial Technology, 2009, 17(2): 236-239, 245 (in Chinese). | |
35 | 王超, 王跃钢. 火箭橇试验分离制导工具误差的有效性分析[J]. 中国惯性技术学报, 2012, 20(2): 248-252. |
WANG C, WANG Y G. Availability analysis of guidance instrument error separation in rocket sled experiment[J]. Journal of Chinese Inertial Technology, 2012, 20(2): 248-252 (in Chinese). | |
36 | 吴立人. 从美国民兵导弹制导精度鉴定的发展过程论我国制导精度鉴定的道路[J]. 航天控制, 1991, 9(S1): 22-27. |
WU L R. State the roads of China guidance accuracy evaluation from the development process of guidance accuracy evaluation of usa minuteman missile[J]. Aerospace Control, 1991, 9(S1): 22-27 (in Chinese). | |
37 | 徐延万. 战略导弹制导精度分析途径的探讨[J]. 航天控制, 1991, 9(S1): 1-8. |
XU Y W. Search for way of guidance accuracy evaluation of strategic missile[J]. Aerospace Control, 1991, 9(S1): 1-8 (in Chinese). | |
38 | 孙开亮, 段晓君, 周海银, 等. 基于弹道的制导工具系统误差非线性分离方法[J]. 飞行器测控学报, 2005, 24(4): 38-42. |
SUN K L, DUAN X J, ZHOU H Y, et al. A nonlinear model for separating guidance instrument systematic error based on tracking trajectory data[J]. Journal of Spacecraft TT&C Technology, 2005, 24(4): 38-42 (in Chinese). | |
39 | 李冬, 魏超, 周萱影. 初始误差和制导工具误差估计的非线性方法[J]. 国防科技大学学报, 2018, 40(6): 61-67. |
LI D, WEI C, ZHOU X Y. Estimation of initial error and guidance instrumentation error based on nonlinear model[J]. Journal of National University of Defense Technology, 2018, 40(6): 61-67 (in Chinese). | |
40 | 邵长林, 周旭, 张凤林, 等. 基于非线性回归模型的分离导弹制导工具误差估计[J]. 南京理工大学学报(自然科学版), 2008, 32(S): 41-44. |
SHAO C L, ZHOU X, ZHANG F L, et al. Control and guide tool’s error estimation to separated missile based on no-linear regression model[J]. Journal of Nanjing University of Science and Technology (Natural Science Edition), 2008, 32(S): 41-44 (in Chinese). | |
41 | 袁林. 地心系下动基座飞行器制导工具系统误差分离[J]. 飞行器测控学报, 2013, 32(1): 80-83. |
YUAN L. Separation of systematic errors of guidance instruments of moving base spacecraft in geocentric coordinate system[J]. Journal of Spacecraft TT&C Technology, 2013, 32(1): 80-83 (in Chinese). | |
42 | 张青, 檀朋硕, 傅瑜, 等. 一种增加动基座飞行器误差分离结果稳定性的半解析方法[J]. 科学技术与工程, 2021, 21(13): 5338-5344. |
ZHANG Q, TAN P S, FU Y, et al. An approximated analytical method to increase the stability of error separation results of moving base aircraft[J]. Science Technology and Engineering, 2021, 21(13): 5338-5344 (in Chinese). | |
43 | 谢玉珍, 李振兴. 制导工具误差线性模型估计的影响因素分析[J]. 航天控制, 2013, 31(5): 46-49. |
XIE Y Z, LI Z X. Influence factors of guidance instrumentation system error linear model estimation[J]. Aerospace Control, 2013, 31(5): 46-49 (in Chinese). | |
44 | 谢玉珍. 发射原点误差对制导工具系统误差分离的影响[J]. 数字通信, 2012, 39(2): 48-50. |
XIE Y Z. The impact of origin error on separating guidance instrument systematic error[J]. Digital Communication, 2012, 39(2): 48-50 (in Chinese). | |
45 | 柳明, 刘雨, 苏宝库. 基于EV模型的惯导平台误差分离方法[J]. 火力与指挥控制, 2009, 34(11): 22-25. |
LIU M, LIU Y, SU B K. Errors-in-variables model based error separation of inertial navigation platform[J]. Fire Control and Command Control, 2009, 34(11): 22-25 (in Chinese). | |
46 | 杨华波, 张士峰, 蔡洪. 制导误差分离中环境函数矩阵的精确计算方法[J]. 飞行器测控学报, 2008, 27(3): 31-34. |
YANG H B, ZHANG S F, CAI H. Precise calculating methods for circumstance function matrix in the guidance instrumental error separation[J]. Journal of Spacecraft TT&C Technology, 2008, 27(3): 31-34 (in Chinese). | |
47 | 王正明, 周海银. 制导工具系统误差估计的新方法[J]. 中国科学E辑: 技术科学, 1998, 28(2): 160-167. |
WANG Z M, ZHOU H Y. A new method for error estimation of guidance tool system[J]. Scientia Sinica (Technologica), 1998, 28(2): 160-167 (in Chinese). | |
48 | 魏红燕. 回归分析中多重共线性的诊断与处理[J]. 周口师范学院学报, 2019, 36(2): 11-15. |
WEI H Y. Diagnosis and treatment of multicollinearity in regression analysis[J]. Journal of Zhoukou Normal University, 2019, 36(2): 11-15 (in Chinese). | |
49 | 赵东波. 线性回归模型中多重共线性问题的研究[D]. 锦州: 渤海大学, 2017: 14-26. |
ZHAO D B. Study on multicollinearity in linear regression model[D]. Jinzhou: Bohai University, 2017: 14-26 (in Chinese). | |
50 | 郭媛媛. 基于核主成分回归的多重共线性消除问题研究[D]. 唐山: 河北联合大学, 2014: 15-25. |
GUO Y Y. The research to eliminate multicollinearity based on kernel principal component regression[D]. Tangshan: Hebei United University, 2014: 15-25 (in Chinese). | |
51 | 张凤莲. 多元线性回归中多重共线性问题的解决办法探讨[D]. 广州: 华南理工大学, 2010: 8-24. |
ZHANG F L. The discussion on solutions of multicollinearity in multilinear regression models[D]. Guangzhou: South China University of Technology, 2010: 8-24 (in Chinese). | |
52 | 冼广铭, 齐德昱, 方群, 等. 改进SVM分类算法中多重共线性问题研究[J]. 计算机工程与应用, 2010, 46(26): 142-144. |
XIAN G M, QI D Y, FANG Q, et al. Research of improving multicollinearity in SVM classification algorithm[J]. Computer Engineering and Applications, 2010, 46(26): 142-144 (in Chinese). | |
53 | 孙文凯. 多重共线性问题评述[J]. 山东经济, 2010, 26(4): 118-126. |
SUN W K. Review of multicollinearity problems[J]. Shandong Economy, 2010, 26(4): 118-126 (in Chinese). | |
54 | 贺昌政, 吕欣. GMDH与PLS解决多重共线性问题的比较研究[J]. 统计与决策, 2007(16): 4-6. |
HE C Z, LYU X. A comparative study of GMDH and PLS in solving multicollinearity problems[J]. Statistics and Decision, 2007(16): 4-6 (in Chinese). | |
55 | 刘红卫. 线性回归模型中多重共线性问题的应对策略及其几点改进[D]. 成都: 西南交通大学, 2006: 8-25. |
LIU H W. The countermeasures and several improvements of multicollinearity in linear regression model[D]. Chengdu: Southwest Jiaotong University, 2006: 8-25 (in Chinese). | |
56 | 曾繁会, 李伟, 吕渭济. 多重共线性问题的神经网络实例分析[J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(5): 659-661. |
ZENG F H, LI W, LYU W J. The problem of multi-variate collinearity with an example based on neural network[J]. Journal of Liaoning Technical University (Natural Science Edition), 2001, 20(5): 659-661 (in Chinese). | |
57 | ZHOU X Y, WANG Z M, LI D, et al. Guidance systematic error separation method based on nonlinear combinatorial model[C]∥ 2018 37th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2018: 4685-4690. |
58 | ZHOU X Y, WANG Z M, LI D, et al. Performance analysis of marine guidance systematic error separation based on linear model[C]∥ 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway: IEEE Press, 2018: 866-871. |
59 | LI D, WEI C. Estimation of initial errors and guidance instrumentation errors for maneuvering launched aircraft[C]∥ 2018 37th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2018: 4531-4535. |
60 | 张炜, 段晓君. 评估制导工具误差的Bayes估计的多层先验模型研究[J]. 导弹与航天运载技术, 2005(1): 10-13. |
ZHANG W, DUAN X J. Multilayer prior model of Bayes method for evaluation of guidance instrumentation systematic error[J]. Missiles and Space Vehicles, 2005(1): 10-13 (in Chinese). | |
61 | 李冬, 龚磊. 初始误差和制导工具误差的线性估计方法[J]. 兵器装备工程学报, 2018, 39(7): 106-110. |
LI D, GONG L. Linear estimation of initial errors and guidance instrumentation errors[J]. Journal of Ordnance Equipment Engineering, 2018, 39(7): 106-110 (in Chinese). | |
62 | WAN A T K. On generalized ridge regression estimators under collinearity and balanced loss[J]. Applied Mathematics and Computation, 2002, 129(2-3): 455-467. |
63 | GOLAM KIBRIA B M. Performance of some new ridge regression estimators[J]. Communications in Statistics - Simulation and Computation, 2003, 32(2): 419-435. |
64 | AKDENIZ F, YüKSEL G, WAN A T K. The moments of the operational almost unbiased ridge regression estimator[J]. Applied Mathematics and Computation, 2004, 153(3): 673-684. |
65 | 张湘平, 邹逢兴, 李大琪. 战略导弹制导系统精度评估方法及应用研究[J]. 国防科技大学学报, 1997, 19(4): 32-37. |
ZHANG X P, ZOU F X, LI D Q. Strategy missile guidance system accuracy evaluation method and application research[J]. Journal of National University of Defense Technology, 1997, 19(4): 32-37 (in Chinese). | |
66 | 谢玉珍. 岭型主成分估计分离制导工具系统误差方法研究[J]. 弹箭与制导学报, 2013, 33(3): 189-191. |
XIE Y Z. The research of combining ridge and principal components estimate in separating guidance instrument systematic error[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3): 189-191 (in Chinese). | |
67 | 沙钰, 吴翊, 王正明. 主成分估计的发展和完善及其在制导工具误差分离中的应用[J]. 航天控制, 1991, 9(S1): 136-146. |
SHA Y, WU Y, WANG Z M. Development and improvoment of principal components estimation and its application in the separation of guidance instrumental errors[J]. Aerospace Control, 1991, 9(S1): 136-146 (in Chinese). | |
68 | 张洪杰. 基于可观测性的滑翔导弹制导工具误差分离技术研究[D]. 长沙: 国防科技大学, 2017: 23-36. |
ZHANG H J. Separation of guidance instrumentation error for glide missile based on observability[D]. Changsha: National University of Defense Technology, 2017: 23-36 (in Chinese). | |
69 | 魏宗康, 郭镇净. 一种基于因果关系的惯性制导工具误差系数分离方法[J]. 导航与控制, 2022, 21(1): 32-40. |
WEI Z K, GUO Z J. A method for separating error coefficients of inertial guidance tools based on causality[J]. Navigation and Control, 2022, 21(1): 32-40 (in Chinese). | |
70 | 魏宗康, 高荣荣, 赵友. 相关性和显著性结合的制导工具误差系数分离方法[J]. 中国惯性技术学报, 2022, 30(6): 799-806. |
WEI Z K, GAO R R, ZHAO Y. A method for separating error coefficients of inertial guidance tools by combining correlation and saliency[J]. Journal of Chinese Inertial Technology, 2022, 30(6): 799-806 (in Chinese). | |
71 | 贺杰, 黄显林, 朱庆华. 特征根估计方法在SINS制导工具误差估计中的应用[J]. 中国惯性技术学报, 2007, 15(3): 282-285. |
HE J, HUANG X L, ZHU Q H. Application of improved latent regression to SINS guidance instrument error estimation[J]. Journal of Chinese Inertial Technology, 2007, 15(3): 282-285 (in Chinese). | |
72 | 苏敬, 张朴睿, 何华锋, 等. 基于改进遗传算法的制导工具误差分离与折合研究[J]. 电光与控制, 2021, 28(2): 33-37. |
SU J, ZHANG P R, HE H F, et al. Error separation and conversion of guidance tool based on improved genetic algorithm[J]. Electronics Optics & Control, 2021, 28(2): 33-37 (in Chinese). | |
73 | 夏青, 杨华波, 张士峰, 等. 基于遗传算法的工具误差分离与弹道折合[J]. 系统仿真学报, 2007, 19(18): 4130-4133. |
XIA Q, YANG H B, ZHANG S F, et al. Instrumentation errors separation and trajectory conversion based on genetic algorithm-principal component[J]. Journal of System Simulation, 2007, 19(18): 4130-4133 (in Chinese). | |
74 | 王玮. 分组遗传算法在制导工具系统误差估计中的应用[J]. 舰船电子工程, 2019, 39(8): 68-70, 75. |
WANG W. Guidance instrumentation system error estimation based on group genetic algorithm[J]. Ship Electronic Engineering, 2019, 39(8): 68-70, 75 (in Chinese). | |
75 | 王召刚, 聂凯. 动基座平台式制导工具误差分离的粒子群算法[J]. 中国惯性技术学报, 2019, 27(6): 830-834. |
WANG Z G, NIE K. Particle swarm optimization algorithm for separating the systematic errors of moving-base platform guidance instruments[J]. Journal of Chinese Inertial Technology, 2019, 27(6): 830-834 (in Chinese). | |
76 | ZHOU X Y, WANG Z M, LI D, et al. Guidance systematic error separation for mobile launch vehicles using artificial fish swarm algorithm[J]. IEEE Access, 2019, 7: 31422-31434. |
77 | 周萱影. 回归模型复共线性诊断方法及其在惯导误差分离中的应用[D]. 长沙: 国防科技大学, 2019: 81-100. |
ZHOU X Y. Multicollinearity diagnosis method of regression model and its application in inertial navigation error separation[D]. Changsha: National University of Defense Technology, 2019: 81-100 (in Chinese). | |
78 | 杨华波, 张士峰, 蔡洪. 惯导工具误差分离与折合的支持向量机方法[J]. 系统仿真学报, 2007, 19(10): 2177-2179, 2182. |
YANG H B, ZHANG S F, CAI H. Separation and conversion for guidance instrumentation systematic error using support vector machines regression[J]. Journal of System Simulation, 2007, 19(10): 2177-2179, 2182 (in Chinese). | |
79 | 杨华波. 惯性测量系统误差标定及分离技术研究[D]. 长沙: 国防科学技术大学, 2008: 136-145. |
YANG H B. Research on error calibration and separation for inertial measurement systems[D]. Changsha: National University of Defense Technology, 2008: 136-145 (in Chinese). | |
80 | GOU Z K, FYFE C. A canonical correlation neural network for multicollinearity and functional data[J]. Neural Networks, 2004, 17(2): 285-293. |
81 | GARG A, TAI K. Comparison of regression analysis, artificial neural network and genetic programming in handling the multicollinearity problem[C]∥2012 Proceedings of International Conference on Modelling, Identification and Control. Piscataway: IEEE Press, 2012: 353-358. |
82 | CHAN J Y L, LEOW S M H, BEA K T, et al. Mitigating the multicollinearity problem and its machine learning approach: A review[J]. Mathematics, 2022, 10(8): 1283. |
83 | 袁林, 刘春光. 基于神经网络算法的制导工具误差分离[J]. 数码世界, 2019(10): 288. |
YUAN L, LIU C G. Error separation of guidance tools based on neural network algorithm[J]. Digital Space, 2019(10): 288 (in Chinese). | |
84 | 韩成柱, 梁红, 张志国. 一种基于CMA-ES的制导工具误差分离方法研究[J]. 航天控制, 2017, 35(4): 48-51, 72. |
HAN C Z, LIANG H, ZHANG Z G. Research of the guidance instrument error separation based on the CMA-ES[J]. Aerospace Control, 2017, 35(4): 48-51, 72 (in Chinese). | |
85 | 赵华, 黄家贵, 梁小虎, 等. 一种制导误差分离的新方法[J]. 飞行器测控学报, 2017, 36(1): 19-24. |
ZHAO H, HUANG J G, LIANG X H, et al. A new algorithm for guidance instrument error separation[J]. Journal of Spacecraft TT&C Technology, 2017, 36(1): 19-24 (in Chinese). | |
86 | Drucker A N, 张国瑞. 弹道式导弹惯性制导系统飞行试验鉴定用的跟踪系统要求的确定和最佳试验方案的设计[J]. 导弹与航天运载技术, 1979(12): 26-45. |
Drucker A N, ZHANG G R. Determination of tracking system requirements and design of optimal test scheme for flight test evaluation of ballistic missile inertial guidance system[J]. Missiles and Space Vehicles, 1979(12): 26-45 (in Chinese). | |
87 | 朱振乾. 洲际弹道导弹制导精度鉴定和命中精度评定技术途径分析[J]. 航天控制, 1991, 9(S1): 13-21. |
ZHU Z Q. Analysis about the problem for guidance accuracy evaluation and ballistic impact verification of intercontinental missile[J]. Aerospace Control, 1991, 9(S1): 13-21 (in Chinese). | |
88 | 张国瑞. 美国洲际弹道导弹制导精度的鉴定[J]. 导弹与航天运载技术, 1982(9): 40-52. |
ZHANG G R. Evaluation of guidance accuracy of American intercontinental ballistic missile[J]. Missiles and Space Vehicles, 1982(9): 40-52 (in Chinese). | |
89 | JENKS L N. Specification design study for flight testing inertial guidance systems GEM (guidance evaluation missile): AD296558[R]. Fort Belvoir: Defense Technical Information Center (DTIC) of United States, 1962. |
90 | 岳铁林. 通用遥测数据处理平台及外弹道估计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012: 39-58. |
YUE T L. Research on general telemetry data processing platform and exterior ballistic estimation methods[D]. Harbin: Harbin Engineering University, 2012: 39-58 (in Chinese). | |
91 | 赵希晶, 项树林. 飞行器外测数据实时处理关键算法探讨[J]. 弹箭与制导学报, 2011, 31(5): 220-223. |
ZHAO X J, XIANG S L. The discussion on key algorithms of real-time data processing of spacecraft trajectory[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(5): 220-223 (in Chinese). | |
92 | 李坤坤, 曹锐, 胡亚雄. 一种弹道外测数据的野值处理方法[J]. 火力与指挥控制, 2021, 46(6): 145-148. |
LI K K, CAO R, HU Y X. A data processing method on outliers for trajectory tracking measurement[J]. Fire Control & Command Control, 2021, 46(6): 145-148 (in Chinese). | |
93 | 张敏, 袁辉. 拉依达(PauTa)准则与异常值剔除[J]. 郑州工业大学学报, 1997, 18(1): 84-88. |
ZHANG M, YUAN H. The PauTa criterion and rejecting the abnormal value[J]. Journal of Zhengzhou University of Technology, 1997, 18(1): 84-88 (in Chinese). | |
94 | 曹元志. 误差理论与测量数据处理原理及方法[M]. 成都: 西南交通大学出版社, 2020: 25-34. |
CAO Y Z. Error theory and principle and method of measurement data processing[M]. Chengdu: Southwest Jiaotong University Press, 2020: 25-34 (in Chinese). | |
95 | YUEN K V, ORTIZ G A. Outlier detection and robust regression for correlated data[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 632-646. |
96 | BARROSO V A N, MOURA J M F. An ML algorithm for outliers detection and source localization[C]∥ 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE Press, 2002: 425-428. |
97 | BRAILOVSKY V L. An approach to outlier detection based on Bayesian probabilistic model[C]∥ 13th International Conference on Pattern Recognition. Piscataway: IEEE Press, 2002: 70-74. |
98 | WEI W H, FUNG W K. The mean-shift outlier model in general weighted regression and its applications[J]. Computational Statistics & Data Analysis, 1999, 30(4): 429-441. |
99 | 徐博, 刘斌, 刘德政, 等. 基于小波理论的舰船IMU加速度计信号处理算法[J]. 中国舰船研究, 2020, 15(2): 151-158, 164. |
XU B, LIU B, LIU D Z, et al. Signal processing algorithm of ship IMU accelerometer based on wave-let theory[J]. Chinese Journal of Ship Research, 2020, 15(2): 151-158,164 (in Chinese). | |
100 | LIU F, LV R L. The indirect estimation algorithm of MEMS IMU stochastic error properties based on wavelet variance[C]∥ 2019 Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2019: 4725-4730. |
101 | ZHANG H J, ZHANG S F. Research on guidance instrumentation error separation method of platform inertial navigation system[C]∥ 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017). Paris: Atlantis Press, 2017: 1269-1276. |
102 | 黄博华, 李锡瑞, 肖常富, 等. BDS卫星钟差数据异常值类型识别的卷积神经网络方法[J]. 武汉大学学报(信息科学版), 2021, 46(6): 947-956. |
HUANG B H, LI X R, XIAO C F, et al. A CNN-based type recognition method for outliers of BDS satellite clock bias[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 947-956 (in Chinese). | |
103 | ZHANG Y M, ZHAO H, MA J Y, et al. A deep neural network-based fault detection scheme for aircraft IMU sensors[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-13. |
104 | BROSSARD M, BONNABEL S, BARRAU A. Denoising IMU gyroscopes with deep learning for open-loop attitude estimation[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4796-4803. |
105 | 王子鉴. 多弹头惯性/星光复合制导精度评估与弹道折合方法研究[D]. 长沙: 国防科技大学, 2018. |
WANG Z J. Study on accuracy evaluation and trajectory conversion of inertial-stellar integrated guidance system based on multiple warheads[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
106 | 曹立佳, 张胜修, 董燕琴, 等. 一种多源试验条件下惯导误差系数融合的新方法[J]. 中国惯性技术学报, 2011, 19(3): 374-378. |
CAO L J, ZHANG S X, DONG Y Q, et al. New method for fusion of inertial navigation system error coefficients with multi-source testing data[J]. Journal of Chinese Inertial Technology, 2011, 19(3): 374-378 (in Chinese). | |
107 | 许永飞. 弹道导弹制导精度综合评估关键技术研究[D]. 长沙: 国防科技大学, 2018: 88-104. |
XU Y F. Research on key techniques for integrated evaluation of ballistic missile guidance precision[D]. Changsha: National University of Defense Technology, 2018: 88-104 (in Chinese). | |
108 | 段秀云, 黄瑜. 基于交叉验证的捷联惯导制导工具误差分离方法[J]. 航天控制, 2014, 32(6): 8-11. |
DUAN X Y, HUANG Y. The separation method for guidance instrumentation error of strapdown navigation system based on cross-validation[J]. Aerospace Control, 2014, 32(6): 8-11 (in Chinese). | |
109 | 温永智, 吴杰, 郑伟. SINS误差参数辨识中环境函数矩阵计算的一种新方法[J]. 弹箭与制导学报, 2007, 27(3): 30-32. |
WEN Y Z, WU J, ZHENG W. A new computing method for environment function matrix in distinguishing SINS instrumentation error[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(3): 30-32 (in Chinese). | |
110 | 贺杰. SINS制导工具误差补偿研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 89-123. |
HE J. SINS guidance instrument error compensation[D]. Harbin: Harbin Institute of Technology, 2008: 89-123 (in Chinese). | |
111 | 岳达. 捷联式导弹四元数工具误差分离模型建模及仿真研究[D]. 长沙: 国防科学技术大学, 2009: 35-46. |
YUE D. The study on establishment and simulation of strapdown missile instrument error model based on quaternion[D]. Changsha: National University of Defense Technology, 2009: 35-46 (in Chinese). | |
112 | 高春伟. 惯性/星光复合制导误差辨识与弹道折合方法研究[D]. 长沙: 国防科学技术大学, 2014: 22-31. |
GAO C W. Study on errors identification and trajectory conversion of inertial-stellar integrated guidance system[D]. Changsha: National University of Defense Technology, 2014: 22-31 (in Chinese). | |
113 | 冯培德. 论混合式惯性导航系统[J]. 中国惯性技术学报, 2016, 24(3): 281-284, 290. |
FENG P D. On hybrid inertial navigation systems[J]. Journal of Chinese Inertial Technology, 2016, 24(3): 281-284, 290 (in Chinese). | |
114 | 王蕾, 王玮, 刘增军, 等. 混合式惯性导航系统全数字平台技术研究[J]. 兵工学报, 2018, 39(7): 1316-1322. |
WANG L, WANG W, LIU Z J, et al. Research on the digital platform for hybrid inertial navigation system[J]. Acta Armamentarii, 2018, 39(7): 1316-1322 (in Chinese). | |
115 | 翁海娜, 宫京, 胡小毛, 等. 混合式光纤陀螺惯导系统在线自主标定[J]. 中国惯性技术学报, 2017, 25(1): 1-5. |
WENG H N, GONG J, HU X M, et al. Online self-calibration of hybrid FOG inertial navigation system[J]. Journal of Chinese Inertial Technology, 2017, 25(1): 1-5 (in Chinese). |
/
〈 |
|
〉 |