special column

Effect of aerodynamic loading coefficient on occurrence of non-synchronous vibration in a multi-stage compressor

  • Ronghui CHENG ,
  • Huawei YU ,
  • Songbai WANG ,
  • Lin DU ,
  • Dakun SUN ,
  • Xiaofeng SUN
Expand
  • 1.AECC Shenyang Engine Research Institute,Shenyang  110015,China
    2.AECC Sichuan Gas Turbine Establishment,Chengdu  610500,China
    3.Fluid and Acoustic Engineering Laboratory,Beihang University,Beijing  102206,China
E-mail: lindu@buaa.edu.cn

Received date: 2023-03-21

  Revised date: 2023-04-04

  Accepted date: 2023-05-16

  Online published: 2023-05-18

Supported by

Sichuan Science and Technology Planning Project(2021YFG0182);National Natural Science Foundation of China(52022009)

Abstract

Through theoretical computation, analysis and experimental research, this paper elucidates the Non-Synchronous Vibration (NSV) phenomenon of rotor blades caused by the Variable Stator Vanes (VSV) which are unexpectedly closed from design point in a core engine test. To reveal the underlying mechanism, three-dimensional full-annulus unsteady numerical simulation is initially performed on the first 1.5-stage compressor where blade vibration is observed. The numerical results show evident flow separation at the rotor blade tip as the installation angle of the first-stage stator blade is closed from 2° to 6°, along with the progressively increase of stage loading of the first-stage rotor. Pressure fluctuation peaks are generated at non-integer multiples of rotational frequency by the unsteady vortex shedding, which is recognized as the characteristic of Rotating Instability (RI). Further, the dependence of the occurrence of NSV induced by RI on the stage loading is systematically calculated and experimentally investigated on a 6-stage transonic compressor. Two-dimensional through-flow simulations are performed to estimate the change in the stage loading of the first-stage rotor with rotational speed under different Variable Inlet Guide Vanes/Variable Stator Vanes (VIGV/VSV) angles. Through a 6-stage compressor test, the analysis on the spectra of strain and pressure fluctuations indicates that NSV is excited on the first-stage rotor by RI when the first-stage stator is adjusted to -8°, which increases the stage loading of the first-stage rotor. The NSV is also observed when the first-stage stator and the second-stage stator are adjusted to -4° and -3.6°, simultaneously. The present results clarify that besides large radial tip clearance, the closing angle of VIGV/VSV can also form high loads at the rotor blade tip, leading to flow instability in the blade tip region and then inducing RI. The findings of this research are of significant guidance to the design of a multistage compressor.

Cite this article

Ronghui CHENG , Huawei YU , Songbai WANG , Lin DU , Dakun SUN , Xiaofeng SUN . Effect of aerodynamic loading coefficient on occurrence of non-synchronous vibration in a multi-stage compressor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(14) : 628722 -628722 . DOI: 10.7527/S1000-6893.2023.28722

References

1 杨明绥, 刘思远, 王德友, 等. 航空发动机压气机声共振现象初探[J]. 航空发动机201238(5): 36-42.
  YANG M S, LIU S Y, WANG D Y, et al. Study of acoustic resonance for aeroengine compressors[J]. Aeroengine201238(5): 36-42 (in Chinese).
2 BAUMGARTNER M, KAMAIER F, HOURMOUZIADIS J. Non-engine order blade vibration in a high pressure compressor[C]∥12th International Symposium on Air-Breathing Engines. 1995.
3 KIELB R E, BARTER J W, THOMAS J P, et al. Blade excitation by aerodynamic instabilities: A compressor blade study[C]∥ Proceedings of ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York: ASME, 2009: 399-406.
4 JüNGST M, HOLZINGER F, SCHIFFER H, et al. Analysing non-synchronous blade vibrations in a transonic compressor rotor[C]∥11th European Conference on Turbomachinery Fluid Dynamic & Thermodynamics. 2015.
5 HOLZINGER F, WARTZEK F, NESTLE M, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance: GT2015-43618[R]. New York: ASME, 2015.
6 FIQUET A L, AUBERT S, BRANDSTETTER C, et al. Acoustic resonance in an axial multistage compressor leading to non-synchronous blade vibration[J]. Journal of Turbomachinery2021143(9): 091014.
7 武卉, 杨明绥, 王德友, 等. 多动态参数同步测试系统构建及其应用[J]. 航空学报201435(2): 391-399.
  WU H, YANG M S, WANG D Y, et al. Construction and application of synchronized test system of multi-dynamic parameters[J]. Acta Aeronautica et Astronautica Sinica201435(2): 391-399 (in Chinese).
8 洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报201940(11): 023139.
  HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica201940(11): 023139 (in Chinese).
9 赵奉同, 景晓东, 沙云东, 等. 压气机内部噪声特征与转子叶片声固耦合机理分析[J]. 航空学报201940(5): 122669.
  ZHAO F T, JING X D, SHA Y D, et al. Analysis of noise characteristics and acoustic structure coupling mechanism of rotor blades in compressor[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122669 (in Chinese).
10 ZHU X C, HU P, LIN T, et al. Numerical investigations on non-synchronous vibration and frequency lock-in of low-pressure steam turbine last stage[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2022236(4): 647-661.
11 IM H, ZHA G C. Investigation of flow instability mechanism causing compressor rotor-blade nonsynchronous vibration[J]. AIAA Journal201452(9): 2019-2031.
12 IM H S, ZHA G C. Effects of rotor tip clearance on tip clearance flow potentially leading to NSV in an axial compressor[C]∥Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 1383-1394.
13 VO H D. Role of tip clearance flow on axial compressor stability[D]. Cambridge: Massachusetts Institute of Technology, 2001.
14 KAMEIER F, NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery1997119(3): 460-471.
15 KAMEIER F, NEISE W. Rotating blade flow instability as a source of noise in axial turbomachines[J]. Journal of Sound and Vibration1997203(5): 833-853.
16 MAILACH R, SAUER H, VOGELER K. The periodical interaction of the tip clearance flow in the blade rows of axial compressors: 2001-GT-0299[R]. New York: ASME, 2001.
17 MAILACH R, LEHMANN I, VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery2001123(3): 453-460.
18 LU Y Z, LAD B, VAHDATI M. Transonic fan blade redesign approach to attenuate nonsynchronous vibration[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021.
19 LU Y Z, LAD B, VAHDATI M, et al. Nonsynchronous vibration associated with transonic fan blade untwist[C]∥ Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019.
20 程荣辉, 雷丕霓, 刘波, 等. 一种工程实用的多级轴流压气机特性二维数值计算方法[J]. 航空动力学报200722(6): 955-960.
  CHENG R H, LEI P N, LIU B, et al. A two-dimension numerical method for multi-stage axial compressor performance in engineering applications[J]. Journal of Aerospace Power200722(6): 955-960 (in Chinese).
Outlines

/