Reviews

Flow and combustion process for wide speed range scramjet: Review

  • Jianheng JI ,
  • Zun CAI ,
  • Taiyu WANG ,
  • Mingbo SUN ,
  • Zhenguo WANG
Expand
  • Hypersonic Technology Laboratory,National University of Defense Technology,Changsha 410073,China
E-mail: caizun1666@163.com

Received date: 2023-03-14

  Revised date: 2023-04-17

  Accepted date: 2023-05-05

  Online published: 2023-05-17

Supported by

National Natural Science Foundation of China(12272408)

Abstract

The increasing demand for future hypersonic vehicle maneuvers heightens the importance of the wide speed range scramjet technology development. However, the wide-range inflow conditions will cause significant changes in the flow, mixing, and combustion processes. In particular, supersonic combustion is a typical diffusion flame dominated by the mixing process, and changes in the inflow conditions have a considerable impact on the fuel transport and mixing process, which can lead to a series of unsteady combustion phenomena. This paper reviews and analyzes the flow and combustion process of the wide speed range scramjet. Firstly, the basic working process and applications of scramjets are briefly introduced. Then the key problems in and research on the supersonic flow and combustion process with the low Mach number inflow, high Mach number inflow and wide speed range inflow at home and abroad are discussed, followed finally by a summary and suggestions for follow-up research.

Cite this article

Jianheng JI , Zun CAI , Taiyu WANG , Mingbo SUN , Zhenguo WANG . Flow and combustion process for wide speed range scramjet: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(3) : 28696 -028696 . DOI: 10.7527/S1000-6893.2023.28696

References

1 TSIEN H S. Similarity laws of hypersonic flows[J]. Journal of Mathematics and Physics194625(1-4): 247-251.
2 GOYNE C, HALL C, O’BRIEN W, et al. The Hy-V scramjet flight experiment[C]∥ Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
3 王江峰, 王旭东, 李佳伟, 等. 高超声速巡航飞行器乘波布局气动设计综述[J]. 空气动力学学报201836(5): 705-728.
  WANG J F, WANG X D, LI J W, et al. Overview on aerodynamic design of cruising waverider configuration for hypersonic vehicles[J]. Acta Aerodynamica Sinica201836(5): 705-728 (in Chinese).
4 张灿, 王轶鹏, 叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术2020(6): 81-86.
  ZHANG C, WANG Y P, YE L. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology2020(6): 81-86 (in Chinese).
5 刘薇, 龚海华. 国外高超声速飞行器发展历程综述[J]. 飞航导弹2020(3): 20-27, 59.
  LIU W, GONG H H. Review on the development history of hypersonic vehicles abroad [J]. Aerodynamic Missile Journal2020(3): 20-27, 59 (in Chinese).
6 张灿, 叶蕾. 法国高超声速技术最新发展动向[J]. 飞航导弹2019(6): 25-26, 51.
  ZHANG C, YE L. The latest development trend of hypersonic technology in France[J]. Aerodynamic Missile Journal2019(6): 25-26, 51 (in Chinese).
7 余勇. 超燃冲压发动机燃烧室工作过程理论和试验研究[D]. 长沙: 国防科学技术大学, 2004.
  YU Y. Thereorical analysis, experimental study of scramjet combustor operation process[D]. Changsha: National University of Defense Technology, 2004 (in Chinese).
8 ZHAO G Y, SUN M B, WU J S, et al. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder[J]. Aerospace Science and Technology201987: 190-206.
9 HAN S, LEE S, LEE B J. Numerical analysis of thermochemical nonequilibrium flows in a model scramjet engine[J]. Energies202013(3): 606.
10 URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics201850: 593-627.
11 李宁, 李旭昌, 张涵, 等. 超声速燃烧火焰稳定技术及其发展综述[J]. 飞航导弹2014(5): 60-67.
  LI N, LI X C, ZHANG H, et al. Review on supersonic combustion flame stabilization technology and its development[J]. Aerodynamic Missile Journal2014(5): 60-67 (in Chinese).
12 CASTROGIOVANNI A. The scramjet engine, processes and characteristics[J]. AIAA Journal201048(9): 2173-2174.
13 LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences2020119: 100636.
14 IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences201897: 1-21.
15 贺理浩, 张启帆, 岳连捷, 等. 高速进气道低马赫数不起动特性及马赫数影响规律[J]. 推进技术202142(10): 2207-2217.
  HE L H, ZHANG Q F, YUE L J, et al. Unstart characteristics of high speed inlet at low Mach number and influence law of Mach number[J]. Journal of Propulsion Technology202142(10): 2207-2217 (in Chinese).
16 田雅茹. 点火延迟对超燃燃烧室宽速域燃烧性能的影响机制研究[D]. 上海: 上海交通大学, 2019.
  TIAN Y R. Study on the mechanism of the effect of ignition delay on the combustion characteristics in wide speed range of scramjet[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
17 HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey[J]. Progress in Aerospace Sciences2018101: 13-30.
18 BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences201576: 24-41.
19 HANK J. Air force research laboratory hypersonic propulsion research programs[C]∥ Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007.
20 HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]∥ Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
21 JACKSON K R, GRUBER M R, BUCCELLATO S. Mach 6–8+ hydrocarbon-fueled scramjet flight experiment: The HIFiRE flight 2 project[J]. Journal of Propulsion and Power201531(1): 36-53.
22 VERGINE F, GROUND C, MADDALENA L. Strut injectors for scramjets: Total pressure losses in two streamwise vortex interactions[J]. Journal of Propulsion and Power201733(5): 1140-1150.
23 BEN-YAKAR A, MUNGAL M G, HANSON R K. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows[J]. Physics of Fluids200618(2): 026101.
24 KARAGOZIAN A R. Transverse jets and their control[J]. Progress in Energy and Combustion Science201036(5): 531-553.
25 FOSTER L, SAUNDERS J, SANDERS B, et al. Highlights from a Mach 4 experimental demonstration of inlet mode transition for turbine-based combined cycle hypersonic propulsion[C]∥ Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012.
26 ROBERTS K, WILSON D. Analysis and design of a hypersonic scramjet engine with a transition Mach number of 4.00[C]∥ Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
27 HUANG W, YAN L, TAN J G. Survey on the mode transition technique in combined cycle propulsion systems[J]. Aerospace Science and Technology201439: 685-691.
28 SONG W Y, LI M, CAI Y H, et al. Experimental investigation of hydrocarbon-fuel ignition in scramjet combustor[J]. Chinese Journal of Aeronautics200417(2): 65-71.
29 DAGAUT P, CATHONNET M. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling[J]. Progress in Energy and Combustion Science200632(1): 48-92.
30 李宁, 宋文艳, 罗飞腾, 等. 基于先锋氢点火和双凹腔火焰稳定的煤油超声速燃烧特性[J]. 推进技术201233(2): 205-210.
  LI N, SONG W Y, LUO F T, et al. Supersonic combustion characteristics of liquid kerosene under pilot hydrogen ignition and dual-cavity flameholding condition[J]. Journal of Propulsion Technology201233(2): 205-210 (in Chinese).
31 TRET’YAKOV P K, BRUNO C. Combustion of kerosene in a supersonic stream[J]. Combustion, Explosion and Shock Waves199935(3): 245-251.
32 BUZUKOV A A. Promoting influence of alkylnitrates on kerosene—Air mixture self-ignition[J]. Combustion, Explosion and Shock Waves199430(3): 269-275.
33 CAI Z, ZHU J J, SUN M B, et al. Laser-induced plasma ignition in a cavity-based scramjet combustor[J]. AIAA Journal201856(12): 4884-4892.
34 FENG R, ZHU J J, WANG Z G, et al. Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma[J]. Energy2021214: 118875.
35 ZHANG J L, CHANG J T, TIAN H M, et al. Flame interaction characteristics in scramjet combustor equipped with strut/wall combined fuel injectors[J]. Combustion Science and Technology2020192(10): 1863-1886.
36 WANG H B, WANG Z G, SUN M B, et al. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor[J]. International Journal of Hydrogen Energy201338(27): 12078-12089.
37 WANG H B, WANG Z G, SUN M B, et al. Large eddy simulation of a hydrogen-fueled scramjet combustor with dual cavity[J]. Acta Astronautica2015108: 119-128.
38 LI J P, WANG K, JIAO G Q, et al. Ignition and combustion characteristics of supersonic combustor under flight Mach number 2.6-3.8[J]. Fuel2021283: 118960.
39 LI J P, LI J D, WANG K, et al. Study of low-temperature ignition characteristics in a supersonic combustor[J]. Energy2020195: 117060.
40 TIAN Y, YANG S H, LE J L, et al. Investigation of combustion process of a kerosene fueled combustor with air throttling[J]. Combustion and Flame2017179: 74-85.
41 TIAN Y, YANG S H, LE J L, et al. Investigation of the effects of fuel injector locations on ignition and flame stabilization in a kerosene fueled scramjet combustor[J]. Aerospace Science and Technology201770: 310-316.
42 LUO F T, SONG W Y, CHEN W J, et al. Investigation of kerosene supersonic combustion performance with hydrogen addition and fuel additive at low Mach inflow conditions[J]. Fuel2021285: 119139.
43 SHI L, GAO D, XING L L, et al. Numerical study on thermal choke behaviors driven by various rocket operations in an RBCC engine in ramjet mode[J]. International Journal of Turbo & Jet-Engines202037(3): 305-317.
44 YANG Q C, BAO W, CHETEHOUNA K, et al. Thermal behavior of an isolator with mode transition inducing back-pressure of a dual-mode scramjet[J]. Chinese Journal of Aeronautics201730(2): 595-601.
45 HUANG W, LI L Q, YAN L, et al. Numerical exploration of mixing and combustion in a dual-mode combustor with backward-facing steps[J]. Acta Astronautica2016127: 572-578.
46 尤厚丰, 张兵, 李德宝. 超燃冲压发动机燃烧室的准一维计算与分析[J]. 推进技术202041(3): 623-631.
  YOU H F, ZHANG B, LI D B. Quasi-one-dimensional prediction and analysis of scramjet combustor[J]. Journal of Propulsion Technology202041(3): 623-631 (in Chinese).
47 AN B, WANG Z G, SUN M B. Ignition dynamics and combustion mode transitions in a rocket-based combined cycle combustor operating in the ramjet/scramjet mode[J]. Aerospace Science and Technology2021118: 106951.
48 邓维鑫. 宽范围马赫数超燃冲压发动机燃烧组织技术研究[D]. 成都: 西南交通大学, 2013.
  DENG W X. Research on combustion organizing technology of scramjet in wide range Mach number[D]. Chengdu: Southwest Jiaotong University, 2013 (in Chinese).
49 XIONG P F, ZHENG D, TAN Y, et al. Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure[J]. Aerospace Science and Technology2021109: 106414.
50 SHI H T, WANG G L, LUO X S, et al. Large-eddy simulation of a pulsed jet into a supersonic crossflow[J]. Computers & Fluids2016140: 320-333.
51 ANVEKAR M, KUSNUR V R, KULKARNI H B. A numerical study on the effect of strut on scramjet combustion intensity at various Mach numbers[J]. Journal of Aeronautics & Aerospace Engineering20209(4): 1-7.
52 CAI Z, ZHU J J, SUN M B, et al. Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor[J]. Applied Energy2018228: 1777-1782.
53 MIAO J J, FAN Y X, WU W Q, et al. Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor[J]. Applied Energy2021283: 116307.
54 IMRAN S, KORAKIANITIS T, SHAUKAT R, et al. Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels[J]. Applied Energy2018229: 1260-1268.
55 LI X J, HUANG X B, LIU H, et al. Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation[J]. Energy2020195: 116920.
56 TIAN Y, ZENG X J, YANG S H, et al. Study on the effects of thermal throat on flame stabilization in a kerosene fueled supersonic combustor[J]. Energy Conversion and Management2018166: 98-105.
57 LI X J, HUANG X B, LIU H. A composite-fuel additive design method for n-decane low-temperature ignition enhancement[J]. Combustion and Flame2018188: 262-272.
58 PASTOR J V, GARCíA-OLIVER J M, GARCíA A, et al. Effect of laser induced plasma ignition timing and location on Diesel spray combustion[J]. Energy Conversion and Management2017133: 41-55.
59 O’BRIANT S A, GUPTA S B, VASU S S. Review: Laser ignition for aerospace propulsion[J]. Propulsion and Power Research20165(1): 1-21.
60 WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute201535(2): 2137-2144.
61 MA S G, ZHONG F Q, ZHANG X Y. Numerical study on supersonic combustion of hydrogen and its mixture with Ethylene and methane with strut injection[J]. International Journal of Hydrogen Energy201843(15): 7591-7599.
62 ZHONG F Q, CHENG L W, GU H B, et al. Experimental study of flame characteristics of ethylene and its mixture with methane and hydrogen in supersonic combustor[J]. Aerospace Science and Technology201986: 775-781.
63 HUANG Z W, ZHAO M J, ZHANG H W. Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen[J]. Fuel2020264: 116809.
64 CAI Z, WANG Z G, SUN M B, et al. Numerical investigation on ignition and flame propagation process of partially covered cavity in a supersonic flow[J]. Modern Physics Letters B201529(23): 1550132.
65 KUMMITHA O R, PANDEY K M, PADIDAM A K R. Effect of a revolved wedge strut induced mixing enhancement for a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy202146(24): 13340-13352.
66 LI W Q, XUE Z R, KE H B, et al. Thermal analysis of a high-efficiency internally-cooled strut injector for scramjet engine[J]. International Journal of Thermal Sciences2021163: 106811.
67 CROCCO L. One-dimensional treatment of steady gas dynamics[M]∥ Fundamentals of Gas Dynamics. Princeton: Princeton University Press, 1958: 64-349.
68 MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences199935(1): 33-100.
69 O’BYRNE S, DOOLAN M, OLSEN S R, et al. Analysis of transient thermal choking processes in a model scramjet engine[J]. Journal of Propulsion and Power200016(5): 808-814.
70 RIGGINS D, TACKETT R, TAYLOR T, et al. Thermodynamic analysis of dual-mode scramjet engine operation and performance[C]∥ Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
71 MCDANIEL K, EDWARDS J. Simulation of thermal choking in a model scramjet combustor[C]∥ Proceedings of the 30th Fluid Dynamics Conference. Reston: AIAA, 1999.
72 路艳红, 凌文辉, 刘敬华, 等. 双模态超燃燃烧室计算[J]. 推进技术199920(3): 56-60, 90.
  LU Y H, LING W H, LIU J H, et al. Computation of dual mode supersonic combustor[J]. Journal of Propulsion Technology199920(3): 56-60, 90 (in Chinese).
73 聂粲, 汪洪波, 孙明波, 等. 矩形管道内激波串结构及其参数分布特性研究[C]∥第十一届全国流体力学学术会议, 2020.
  NIE C, WANG H B, SUN M B,et al. Study on the structure and parameter distribution of shock train in rectangular pipeline[C]∥The 11th National Conference on Fluid Mechanics, 2020 (in Chinese).
74 DRISCOLL J F, RASMUSSEN C C. Correlation and analysis of blowout limits of flames in high-speed airflows[J]. Journal of Propulsion and Power200521(6): 1035-1044.
75 FIRSOV A, SAVELKIN K V, YARANTSEV D A, et al. Plasma-enhanced mixing and flameholding in supersonic flow[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences2015373(2048): 20140337.
76 VINCENT-RANDONNIER A, LEONOV S B, PACKAN D. First experiments on plasma assisted supersonic combustion at LAERTE facility[C]∥ Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
77 MARBLE F, HENDRICKES G, ZUKOSKI E. Progress toward shock enhancement of supersonic combustion processes[C]∥ Proceedings of the 23rd Joint Propulsion Conference. Reston: AIAA, 1987.
78 SEINER J, DASH S, KENZAKOWSKI D. Historical survey on enhanced mixing in scramjet engines[C]∥ Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999.
79 HOUPT A, LEONOV S, OMBRELLO T, et al. Flow control in supersonic-cavity-based airflow by quasi-direct-current electric discharge[J]. AIAA Journal201957(7): 2881-2891.
80 LEONOV S B, ELLIOTT S, CARTER C, et al. Modes of plasma-stabilized combustion in cavity-based M=2 configuration[J]. Experimental Thermal and Fluid Science2021124: 110355.
81 EKLUND D R, STOUFFER S D, NORTHAM G B. Study of a supersonic combustor employing swept ramp fuel injectors[J]. Journal of Propulsion and Power199713(6): 697-704.
82 GéNIN F, MENON S. Simulation of turbulent mixing behind a strut injector in supersonic flow[J]. AIAA Journal201048(3): 526-539.
83 HARTFIELD R J Jr, HOLLO S D, MCDANIEL J C. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence[J]. Journal of Propulsion and Power199410(1): 129-135.
84 CHOUBEY G, GAUD P, MAHMOOD FATAH A, et al. Numerical investigation on geometric sensitivity and flame stabilisation mechanism in H2 fueled two-strut based scramjet combustor[J]. Fuel2022312: 122847.
85 BILLIG F S. Research on supersonic combustion[J]. Journal of Propulsion and Power19939(4): 499-514.
86 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报202254(2): 263-288.
  YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics202254(2): 263-288 (in Chinese).
87 PETTY D J, WHEATLEY V, SMART M K, et al. Effects of oxygen enrichment on scramjet performance[J]. AIAA Journal201351(1): 226-235.
88 SURAWEERA M V, SMART M K. Shock-tunnel experiments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions[J]. Journal of Propulsion and Power200925(3): 555-564.
89 DOHERTY L J, SMART M K, MEE D J. Experimental testing of an airframe-integrated three-dimensional scramjet at Mach 10[J]. AIAA Journal201553(11): 3196-3207.
90 LANDSBERG W O, WHEATLEY V, SMART M K, et al. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet[J]. AIAA Journal201856(10): 3802-3807.
91 BRICALLI M G, BROWN L, BOYCE R R, et al. Scramjet performance with nonuniform flow and swept nozzles[J]. AIAA Journal201856(10): 3988-4003.
92 MOURA A F, GIBBONS N, WHEATLEY V, et al. Effects of oxygen enrichment on supersonic combustion in a Mach 10 scramjet[J]. AIAA Journal202159(11): 4556-4568.
93 MATHUR A, GOLDFELD M, MISHUNIN A, et al. Investigation of hydrocarbon fuels combustion in supersonic combustor[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
94 YANG Q C, CHANG J T, BAO W. Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet[J]. Energy201476: 552-558.
95 LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute201937(3): 3733-3740.
96 MECKLEM S A, LANDSBERG W O, CURRAN D, et al. Combustion enhancement via tandem cavities within a Mach 8 scramjet combustor[J]. Aerospace Science and Technology2022124: 107551.
97 BRIESCHENK S, LORRAIN P, CAPRA B, et al. Chemiluminescence imaging in supersonic combustors operating in radical-farming mode[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
98 CAPRA B R, BOYCE R R, KUHN M, et al. Porous versus porthole fuel injection in a radical farming scramjet: numerical analysis[J]. Journal of Propulsion and Power201531(3): 789-804.
99 KOO H, RAMAN V, VARGHESE P L. Direct numerical simulation of supersonic combustion with thermal nonequilibrium[J]. Proceedings of the Combustion Institute201535(2): 2145-2153.
100 FIéVET R, VOELKEL S, KOO H, et al. Effect of thermal nonequilibrium on ignition in scramjet combustors[J]. Proceedings of the Combustion Institute201736(2): 2901-2910.
101 FIéVET R, RAMAN V. Effect of vibrational nonequilibrium on isolator shock structure[J]. Journal of Propulsion and Power201834(5): 1334-1344.
102 FIéVET R. Impact of vibrational nonequilibrium on the simulation and modeling of dual-mode scramjets[D]. Ann Arbor: University of Michigan, 2018, 176-214.
103 LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets-Tunnel vs flight[J]. Acta Astronautica2018146: 103-110.
104 MCGILVRAY M, MORGAN R G. Effects of upstream injection on scramjet performance using an entropy-based method[J]. Journal of Propulsion and Power200925(2): 295-302.
105 黄志伟. 超声速来流下的动态燃烧机理研究[D]. 西安: 西北工业大学, 2018.
  HUANG Z W. Investigation on the mechanisms of combustion dynamics under supersonic inflow conditions[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
106 ODAM J, PAULL A. Radical farming in scramjets[C]∥New Results in Numerical and Experimental Fluid Mechanics VI. Berlin, Heidelberg: Springer, 2007: 276-283.
107 BOYCE R R, MUDFORD N R, MCGUIRE J R. OH-PLIF visualisation of radical farming supersonic combustion flows[J]. Shock Waves201222(1): 9-21.
108 SCOTT CARL D. Hypersonic and high temperature gas dynamics[J]. American Scientist199179(2): 181.
109 TIAN Y, XIAO B G, ZHANG S P, et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine[J]. Aerospace Science and Technology201546: 451-458.
110 BUILDER C. On the thermodynamic spectrum of airbreathing propulsion[C]∥ Proceedings of the 1st Annual Meeting. Reston: AIAA, 1964.
111 HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994: 241-248.
112 MERCIER R, RONALD T. Hypersonic technology (HyTech) program overview[C]∥ Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998.
113 SMITH C T, GOYNE C P. Application of stereoscopic particle image velocimetry to a dual-mode scramjet[J]. Journal of Propulsion and Power201127(6): 1178-1185.
114 F?RSTER F J, DR?SKE N C, BüHLER M N, et al. Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization[J]. Combustion and Flame2016168: 204-215.
115 连欢, 顾洪斌, 周芮旭, 等. 超燃冲压发动机模态转换及推力突变试验研究[J]. 试验流体力学202135(1): 97-108.
  LIAN H, GU H B, ZHOU R X, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics202135(1): 97-108 (in Chinese).
116 LANDSBERG W O, WHEATLEY V, VEERARAGA? VAN A. Characteristics of cascaded fuel injectors within an accelerating scramjet combustor[J]. AIAA Journal201654(12): 3692-3700.
117 ARAKAWA T, NOJIMA K, KOBAYASHI K, et al. Fuel/air mixing in reacting and non-reacting flows within a dual-mode combustor[J]. Transactions of the Japan Society for Aeronautical and Space Sciences202164(2): 71-81.
118 ARAKAWA T, TOMIOKA S. Research on fuel mixing in a non-reacting situation simulating a dual-mode combustor[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan201917(1): 82-89.
119 ROCKWELL R D, GOYNE C P, CHELLIAH H, et al. Development of a premixed combustion capability for dual-mode scramjet experiments[J]. Journal of Propulsion and Power201834(2): 438-448.
120 BARTH J E, WISE D J, WHEATLEY V, et al. Tailored fuel injection for performance enhancement in a Mach 12 scramjet engine[J]. Journal of Propulsion and Power201935(1): 72-86.
121 张旭, 张启帆, 岳连捷, 等. 高马赫数燃烧强化的激波风洞试验研究[J]. 力学学报202254(5): 1403-1413.
  ZHANG X, ZHANG Q F, YUE L J, et al. Shock-tunnel experimental study of combustion enhancement methods for a high-Mach-number scramjet[J]. Chinese Journal of Theoretical and Applied Mechanics202254(5): 1403-1413 (in Chinese).
122 RODRIGUEZ C G. Computational fluid dynamics analysis of the central institute of aviation motors/NASA scramjet[J]. Journal of Propulsion and Power200319(4): 547-555.
123 浮强, 宋文艳, 石德永, 等. 来流总温对双模态燃烧室模态转换边界的影响[J]. 航空动力学报201934(5): 1119-1126.
  FU Q, SONG W Y, SHI D Y, et al. Effects of incoming flow total temperature on mode transition boundary in dual mode scramjet combustor[J]. Journal of Aerospace Power201934(5): 1119-1126 (in Chinese).
124 CURRAN D, WHEATLEY V, SMART M. Investigation of combustion mode control in a Mach 8 shape-transitioning scramjet[J]. AIAA Journal201957(7): 2977-2988.
125 MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology201993: 105316.
126 ZHANG J L, LIN L B, LUAN G W, et al. Experimental research on the stability margin of a variable geometry scramjet combustor in wide flight conditions[J]. Acta Astronautica2023202: 151-156.
127 QIU H C, ZHANG J L, FENG G J, et al. Numerical investigation on performance of axisymmetric variable geometry scramjet combustor equipped with strut flame holder[J]. Combustion Science and Technology2023195(5): 1059-1083.
128 FENG S, CHANG J T, ZHANG J L, et al. Numerical and experimental investigation of improving combustion performance of variable geometry dual-mode combustor[J]. Aerospace Science and Technology201764: 213-222.
129 FENG S, CHANG J T, ZHANG Y S, et al. Numerical studies for performance improvement of a variable geometry dual mode combustor by optimizing deflection angle[J]. Aerospace Science and Technology201768: 320-330.
130 WANG Y Y, SHI W, WANG X, et al. Aerodynamic performance enhancement of a variable-geometry dual-mode combustor designed by the method of characteristics[J]. Aerospace Science and Technology2021108: 106353.
131 ROGERS R. A study of the mixing of hydrogen injected normal to a supersonic airstream: NASA-TN-D-6114[R]. Washington, D.C.: NASA, 1971.
132 RIGGINS D, MCCLINTON C. A computational investigation of mixing and reacting flows in supersonic combustors[C]∥ Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
133 GUTMARK E J, SCHADOW K C, YU K H. Mixing enhancement in supersonic free shear flows[J]. Annual Review of Fluid Mechanics199527: 375-417.
134 HIRANO K, MATSUO A, KOUCHI T, et al. New injector geometry for penetration enhancement of perpendicular jet into supersonic flow[C]∥ Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007.
135 GRUBER M R, NEJAD A S, CHEN T H, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream[J]. Journal of Propulsion and Power199511(2): 315-323.
136 DOHERTY L, SMART M, MEE D. Design of an airframe integrated 3D scramjet and experimental results at a Mach 10 flight condition[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
137 TURNER J C, SMART M K. Mode change characteristics of a three-dimensional scramjet at Mach 8[J]. Journal of Propulsion and Power201329(4): 982-990.
138 AGUILERA C, YU K H. Scramjet to ramjet transition in a dual-mode combustor with fin-guided injection[J]. Proceedings of the Combustion Institute201736(2): 2911-2918.
139 STEVA T B, GOYNE C P, ROCKWELL R D, et al. Comparison of a direct-connect and freejet dual-mode scramjet[J]. Journal of Propulsion and Power201531(5): 1380-1392.
140 FALEMPIN F, SCHERRER D, LARUELLE G, et al. French Hypersonic Propulsion Program PREPHA-Results, lessons and perspectives[C]∥ Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998.
141 DESSORNES O, SCHERRER D. Tests of the JAPHAR dual mode ramjet engine[J]. Aerospace Science and Technology20059(3): 211-221.
142 YANG H, MA J, MAN Y J, et al. Numerical simulation of variable-geometry inlet for TRRE combined cycle engine[C]∥ Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
143 BOUCHEZ M, FALEMPIN F, LEVINE V, et al. French-Russian partnership on hypersonic wide-range ramjets[J]. Journal of Propulsion and Power200117(6): 1177-1183.
144 FALEMPIN F, SERRE L. French flight testing program LEA - status in 2011[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011.
145 STARKEY R. Off-design performance characterization of a variable geometry scramjet[C]∥ Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005.
146 ZHU X B, CAI Z, WU J J, et al. Convolutional neural network based combustion mode classification for condition monitoring in the supersonic combustor[J]. Acta Astronautica2019159: 349-357.
147 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报202142(4): 524736.
  YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524736 (in Chinese).
148 ZHOU L, SONG Y T, JI W Q, et al. Machine learning for combustion[J]. Energy and AI20227: 100128.
149 OGAWA H. Physical insight into fuel-air mixing for upstream-fuel-injected scramjets via multi-objective design optimization[J]. Journal of Propulsion and Power201531(6): 1505-1523.
150 ZHU M J, ZHANG S, ZHENG Y. Conceptual design and optimization of scramjet engines using the exergy method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering201840(12): 553.
Outlines

/