Electronics and Electrical Engineering and Control

Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain

  • Sai ZHANG ,
  • Zhen YANG ,
  • Xiangnan DU ,
  • Yazhong LUO
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha  410073,China
    2.Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,Changsha  410073,China
    3.Shanghai Institute of Mechanical and Electrical Engineering,Shanghai  201109,China

Received date: 2023-03-31

  Revised date: 2023-04-28

  Accepted date: 2023-05-12

  Online published: 2023-05-15

Supported by

National Natural Science Foundation of China(12125207);Young Elite Scientists Sponsorship Program(2021-JCJQ-QT-047)

Abstract

In the face of the increasingly complex space security situation, this paper proposes an approach based on spacecraft reachable domain for spacecraft maneuvering approach threat calculation, assessment, and avoidance. Firstly, a general method to solve the reachable domain for spacecraft with single limited-magnitude impulse based on the reachable criterion is presented. Secondly, the region in the threat domain of on-orbit spacecraft is calculated by judging the position relationship between its orbit and the reachable domain of incoming maneuvering spacecraft which is the danger area. Thirdly, a threat evaluation index is defined by means of the time two spacecraft enter and exit the danger area. The threat of on-orbit spacecraft is measured from two aspects: position matching and time window matching. Based on minimizing the danger area, an active avoidance strategy of spacecraft with optimum multi-impulses maneuver is given to avoid the danger area. The simulations show that the on-orbit spacecraft can avoid the danger area while satisfying the given constraint conditions, and return to the proper orbit with minimum fuel consumption.

Cite this article

Sai ZHANG , Zhen YANG , Xiangnan DU , Yazhong LUO . Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 328778 -328778 . DOI: 10.7527/S1000-6893.2023.28778

References

1 KLISAUSKAITE V. China Space Station avoids near-collision with Starlink satellites[EB/OL]. (2021-12-29)[2023-03-29]. .
2 籍润泽, 陈国玖, 张瑜, 等. 美国太空军建设发展动向研究[J]. 中国航天2022(10): 56-61.
  JI R Z, CHEN G J, ZHANG Y, et al. Development trend of the US space force[J]. Aerospace China2022(10): 56-61 (in Chinese).
3 高振良, 孙小凡, 刘育强, 等. 航天器在轨延寿服务发展现状与展望[J]. 航天器工程202231(4): 98-107.
  GAO Z L, SUN X F, LIU Y Q, et al. Development and prospect of spacecraft on-orbit life extension servicing[J]. Spacecraft Engineering202231(4): 98-107 (in Chinese).
4 张赛, 杨震, 罗亚中. 地固系下航天器单脉冲轨道机动可达域求解算法[J]. 力学与实践202244(6): 1286-1296.
  ZHANG S, YANG Z, LUO Y Z. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering in ECEF coordinate system[J]. Mechanics in Engineering202244(6): 1286-1296 (in Chinese).
5 CARUSO A, NICCOLAI L, QUARTA A A, et al. Envelopes of spacecraft trajectories with a single impulse[J]. Aerotecnica Missili & Spazio201998(4): 293-299.
6 VINH N X, GILBERT E G, HOWE R M, et al. Reachable domain for interception at hyperbolic speeds[J]. Acta Astronautica199535(1): 1-8.
7 BATTIN R H. An introduction to the mathematics and methods of astrodynamics[M]. Revised edition. Reston: AIAA, 1999.
8 XUE D, LI J F, BAOYIN H X, et al. Reachable domain for spacecraft with a single impulse[J]. Journal of Guidance, Control, and Dynamics201033(3): 934-942.
9 WEN C X, ZHAO Y S, SHI P. Precise determination of reachable domain for spacecraft with single impulse[J]. Journal of Guidance, Control, and Dynamics201437(6): 1767-1779.
10 杜向南, 杨震. 航天器单脉冲机动可达域求解算法[J]. 力学学报202052(6): 1621-1631.
  DU X N, YANG Z. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering[J]. Chinese Journal of Theoretical and Applied Mechanics202052(6): 1621-1631 (in Chinese).
11 ZHANG H Y, ZHANG G. Reachable domain of ground track with a single impulse[J]. IEEE Transactions on Aerospace and Electronic Systems202157(2): 1105-1122.
12 WEN C X, GAO Y, SHI H. Three-dimensional relative reachable domain with initial state uncertainty in Gaussian distribution[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(5): 1555-1570.
13 XIA C Y, ZHANG G, GENG Y H. Reachable domain with a single coplanar impulse considering the target-visit constraint[J]. Advances in Space Research202269(10): 3847-3855.
14 WEN C X, QIAO D. Calculating collision probability for long-term satellite encounters through the reachable domain method[J]. Astrodynamics20226(2): 141-159.
15 温昶煊. 面向空间态势感知的可达范围理论与应用研究[D]. 北京: 北京航空航天大学, 2015.
  WEN C X. Space situational awareness oriented research on theory and application of reachable domain[D]. Beijing: Beihang University, 2015 (in Chinese).
16 GONG H R, GONG S P, LI J F. Pursuit–evasion game for satellites based on continuous thrust reachable domain[J]. IEEE Transactions on Aerospace and Electronic Systems202056(6): 4626-4637.
17 VENIGALLA C, SCHEERES D J. Delta-V-based analysis of spacecraft pursuit–evasion games[J]. Journal of Guidance, Control, and Dynamics202144(11): 1961-1971.
18 杜向南. 航天器机动可达域表征与威胁规避[D]. 长沙: 国防科技大学, 2021.
  DU X N. Characterization of spacecraft maneuverability and threat avoidance[D].Changsha: National University of Defense Technology, 2021 (in Chinese).
19 LI J S, YANG Z, LUO Y Z. A review of space-object collision probability computation methods[J]. Astrodynamics20226(2): 95-120.
20 LE MAY S, GEHLY S, CARTER B A, et al. Space debris collision probability analysis for proposed global broadband constellations[J]. Acta Astronautica2018151: 445-455.
21 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报201738(1): 320202.
  YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica201738(1): 320202 (in Chinese).
22 ZHOU W M, WANG H, TANG G J, et al. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network[J]. Advances in Space Research201658(6): 938-949.
23 于大腾, 王华, 周晚萌. 考虑空间几何关系的反交会规避机动方法[J]. 国防科技大学学报201638(6): 89-94.
  YU D T, WANG H, ZHOU W M. Anti-rendezvous evasive maneuver method considering space geometrical relationship[J]. Journal of National University of Defense Technology201638(6): 89-94 (in Chinese).
24 WANG S Q, SCHAUB H. Spacecraft collision avoidance using coulomb forces with separation distance and rate feedback[J]. Journal of Guidance, Control, and Dynamics200831(3): 740-750.
25 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报201334(8): 1934-1943.
  ZHENG Z, SONG S M. Adaptive coordination control of satellites within formation considering collision avoidance[J]. Acta Aeronautica et Astronautica Sinica201334(8): 1934-1943 (in Chinese).
26 赵力冉, 党朝辉, 张育林. 空间轨道博弈: 概念、原理与方法[J]. 指挥与控制学报20217(3): 215-224.
  ZHAO L R, DANG Z H, ZHANG Y L. Orbital game: Concepts, principles and methods[J]. Journal of Command and Control20217(3): 215-224 (in Chinese).
27 许旭升, 党朝辉, 宋斌, 等. 基于多智能体强化学习的轨道追逃博弈方法[J]. 上海航天(中英文)202239(2): 24-31.
  XU X S, DANG Z H, SONG B, et al. Method for cluster satellite orbit pursuit-evasion game based on multi-agent deep deterministic policy gradient algorithm[J]. Aerospace Shanghai (Chinese & English)202239(2): 24-31 (in Chinese).
28 HAN H Y, DANG Z H. Optimal delta-V-based strategies in orbital pursuit-evasion games[J]. Advances in Space Research202372(2): 243-256.
29 ZHAO L R, ZHANG Y L, DANG Z H. PRD-MADDPG: An efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers[J]. Advances in Space Research202372(2): 211-230.
30 LI Z Y, ZHU H, YANG Z, et al. A dimension-reduction solution of free-time differential games for spacecraft pursuit-evasion[J]. Acta Astronautica2019163: 201-210.
31 ZHU Y H, LUO Y Z, ZHANG J. Packing programming of space station spacewalk events based on bin packing theory and differential evolution algorithm[C]∥ 2016 IEEE Corgress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2016: 877-884.
Outlines

/