ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain
Received date: 2023-03-31
Revised date: 2023-04-28
Accepted date: 2023-05-12
Online published: 2023-05-15
Supported by
National Natural Science Foundation of China(12125207);Young Elite Scientists Sponsorship Program(2021-JCJQ-QT-047)
In the face of the increasingly complex space security situation, this paper proposes an approach based on spacecraft reachable domain for spacecraft maneuvering approach threat calculation, assessment, and avoidance. Firstly, a general method to solve the reachable domain for spacecraft with single limited-magnitude impulse based on the reachable criterion is presented. Secondly, the region in the threat domain of on-orbit spacecraft is calculated by judging the position relationship between its orbit and the reachable domain of incoming maneuvering spacecraft which is the danger area. Thirdly, a threat evaluation index is defined by means of the time two spacecraft enter and exit the danger area. The threat of on-orbit spacecraft is measured from two aspects: position matching and time window matching. Based on minimizing the danger area, an active avoidance strategy of spacecraft with optimum multi-impulses maneuver is given to avoid the danger area. The simulations show that the on-orbit spacecraft can avoid the danger area while satisfying the given constraint conditions, and return to the proper orbit with minimum fuel consumption.
Sai ZHANG , Zhen YANG , Xiangnan DU , Yazhong LUO . Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 328778 -328778 . DOI: 10.7527/S1000-6893.2023.28778
1 | KLISAUSKAITE V. China Space Station avoids near-collision with Starlink satellites[EB/OL]. (2021-12-29)[2023-03-29]. . |
2 | 籍润泽, 陈国玖, 张瑜, 等. 美国太空军建设发展动向研究[J]. 中国航天, 2022(10): 56-61. |
JI R Z, CHEN G J, ZHANG Y, et al. Development trend of the US space force[J]. Aerospace China, 2022(10): 56-61 (in Chinese). | |
3 | 高振良, 孙小凡, 刘育强, 等. 航天器在轨延寿服务发展现状与展望[J]. 航天器工程, 2022, 31(4): 98-107. |
GAO Z L, SUN X F, LIU Y Q, et al. Development and prospect of spacecraft on-orbit life extension servicing[J]. Spacecraft Engineering, 2022, 31(4): 98-107 (in Chinese). | |
4 | 张赛, 杨震, 罗亚中. 地固系下航天器单脉冲轨道机动可达域求解算法[J]. 力学与实践, 2022, 44(6): 1286-1296. |
ZHANG S, YANG Z, LUO Y Z. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering in ECEF coordinate system[J]. Mechanics in Engineering, 2022, 44(6): 1286-1296 (in Chinese). | |
5 | CARUSO A, NICCOLAI L, QUARTA A A, et al. Envelopes of spacecraft trajectories with a single impulse[J]. Aerotecnica Missili & Spazio, 2019, 98(4): 293-299. |
6 | VINH N X, GILBERT E G, HOWE R M, et al. Reachable domain for interception at hyperbolic speeds[J]. Acta Astronautica, 1995, 35(1): 1-8. |
7 | BATTIN R H. An introduction to the mathematics and methods of astrodynamics[M]. Revised edition. Reston: AIAA, 1999. |
8 | XUE D, LI J F, BAOYIN H X, et al. Reachable domain for spacecraft with a single impulse[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 934-942. |
9 | WEN C X, ZHAO Y S, SHI P. Precise determination of reachable domain for spacecraft with single impulse[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1767-1779. |
10 | 杜向南, 杨震. 航天器单脉冲机动可达域求解算法[J]. 力学学报, 2020, 52(6): 1621-1631. |
DU X N, YANG Z. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1621-1631 (in Chinese). | |
11 | ZHANG H Y, ZHANG G. Reachable domain of ground track with a single impulse[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1105-1122. |
12 | WEN C X, GAO Y, SHI H. Three-dimensional relative reachable domain with initial state uncertainty in Gaussian distribution[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(5): 1555-1570. |
13 | XIA C Y, ZHANG G, GENG Y H. Reachable domain with a single coplanar impulse considering the target-visit constraint[J]. Advances in Space Research, 2022, 69(10): 3847-3855. |
14 | WEN C X, QIAO D. Calculating collision probability for long-term satellite encounters through the reachable domain method[J]. Astrodynamics, 2022, 6(2): 141-159. |
15 | 温昶煊. 面向空间态势感知的可达范围理论与应用研究[D]. 北京: 北京航空航天大学, 2015. |
WEN C X. Space situational awareness oriented research on theory and application of reachable domain[D]. Beijing: Beihang University, 2015 (in Chinese). | |
16 | GONG H R, GONG S P, LI J F. Pursuit–evasion game for satellites based on continuous thrust reachable domain[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4626-4637. |
17 | VENIGALLA C, SCHEERES D J. Delta-V-based analysis of spacecraft pursuit–evasion games[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 1961-1971. |
18 | 杜向南. 航天器机动可达域表征与威胁规避[D]. 长沙: 国防科技大学, 2021. |
DU X N. Characterization of spacecraft maneuverability and threat avoidance[D].Changsha: National University of Defense Technology, 2021 (in Chinese). | |
19 | LI J S, YANG Z, LUO Y Z. A review of space-object collision probability computation methods[J]. Astrodynamics, 2022, 6(2): 95-120. |
20 | LE MAY S, GEHLY S, CARTER B A, et al. Space debris collision probability analysis for proposed global broadband constellations[J]. Acta Astronautica, 2018, 151: 445-455. |
21 | 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 38(1): 320202. |
YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 320202 (in Chinese). | |
22 | ZHOU W M, WANG H, TANG G J, et al. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network[J]. Advances in Space Research, 2016, 58(6): 938-949. |
23 | 于大腾, 王华, 周晚萌. 考虑空间几何关系的反交会规避机动方法[J]. 国防科技大学学报, 2016, 38(6): 89-94. |
YU D T, WANG H, ZHOU W M. Anti-rendezvous evasive maneuver method considering space geometrical relationship[J]. Journal of National University of Defense Technology, 2016, 38(6): 89-94 (in Chinese). | |
24 | WANG S Q, SCHAUB H. Spacecraft collision avoidance using coulomb forces with separation distance and rate feedback[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 740-750. |
25 | 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报, 2013, 34(8): 1934-1943. |
ZHENG Z, SONG S M. Adaptive coordination control of satellites within formation considering collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1934-1943 (in Chinese). | |
26 | 赵力冉, 党朝辉, 张育林. 空间轨道博弈: 概念、原理与方法[J]. 指挥与控制学报, 2021, 7(3): 215-224. |
ZHAO L R, DANG Z H, ZHANG Y L. Orbital game: Concepts, principles and methods[J]. Journal of Command and Control, 2021, 7(3): 215-224 (in Chinese). | |
27 | 许旭升, 党朝辉, 宋斌, 等. 基于多智能体强化学习的轨道追逃博弈方法[J]. 上海航天(中英文), 2022, 39(2): 24-31. |
XU X S, DANG Z H, SONG B, et al. Method for cluster satellite orbit pursuit-evasion game based on multi-agent deep deterministic policy gradient algorithm[J]. Aerospace Shanghai (Chinese & English), 2022, 39(2): 24-31 (in Chinese). | |
28 | HAN H Y, DANG Z H. Optimal delta-V-based strategies in orbital pursuit-evasion games[J]. Advances in Space Research, 2023, 72(2): 243-256. |
29 | ZHAO L R, ZHANG Y L, DANG Z H. PRD-MADDPG: An efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers[J]. Advances in Space Research, 2023, 72(2): 211-230. |
30 | LI Z Y, ZHU H, YANG Z, et al. A dimension-reduction solution of free-time differential games for spacecraft pursuit-evasion[J]. Acta Astronautica, 2019, 163: 201-210. |
31 | ZHU Y H, LUO Y Z, ZHANG J. Packing programming of space station spacewalk events based on bin packing theory and differential evolution algorithm[C]∥ 2016 IEEE Corgress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2016: 877-884. |
/
〈 |
|
〉 |