ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Space target rendezvous sequence planning via pointer networks
Received date: 2023-04-11
Revised date: 2023-04-22
Accepted date: 2023-05-06
Online published: 2023-05-12
Supported by
National Natural Science Foundation of China(12125207)
Traversal rendezvous mission planning of multiple space targets for a single spacecraft is a mixed-integer programming problem with high complexity, which involves the combinatorial optimization of the top-level rendezvous sequence and the continuous optimization of the base-level flight trajectories. Existing methods that integrally optimize all discrete and continuous variables are inefficient and difficult to achieve the optimum. We propose a learning-based method that can efficiently obtain the near-optimal sequence mainly using the pointer networks. First, the neural network model for multiple-space-target traversal rendezvous planning is constructed as the decision agent of sequencing. Second, an unsupervised learning method based on the asynchronous advantage actor-critic algorithm is proposed to avoid the expensive computational cost in obtaining training labels. Finally, an estimation method to rapidly approximate the actual transfer cost is embedded in the training process to improve the efficiency of calculating rewards. Case studies show that the proposed training method performs efficiently, and the well-trained agent can rapidly predict the optimal sequence with a probability more than 88.7%.
Jiacheng ZHANG , Yuehe ZHU , Yazhong LUO . Space target rendezvous sequence planning via pointer networks[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528698 -528698 . DOI: 10.7527/S1000-6893.2023.28698
1 | SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80: 18-32. |
2 | SIZOV D A, ASLANOV V S. Space debris removal with harpoon assistance: Choice of parameters and optimization[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(4): 767-778. |
3 | LI Y X, HUO J, MA P, et al. Target localization method of non-cooperative spacecraft on on-orbit service[J]. Chinese Journal of Aeronautics, 2022, 35(11): 336-348. |
4 | ZHANG J, PARKS G T, LUO Y Z, et al. Multispacecraft refueling optimization considering the J2 perturbation and window constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1): 111-122. |
5 | GAO Y T, LU X, PENG Y M, et al. Trajectory optimization of multiple asteroids exploration with asteroid 2010TK7 as main target[J]. Advances in Space Research, 2019, 63(1): 432-442. |
6 | PELONI A, CERIOTTI M, DACHWALD B. Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2712-2724. |
7 | HELVIG C S, ROBINS G, ZELIKOVSKY A. The moving-target traveling salesman problem[J]. Journal of Algorithms, 2003, 49(1): 153-174. |
8 | SAAD S, WAN JAAFAR W N, JAMIL S J. Solving standard traveling salesman problem and multiple traveling salesman problem by using branch-and-bound[C]∥ AIP Conference Proceedings. 2013. |
9 | TOMANOVá P, HOLY V. Ant colony optimization for time-dependent travelling salesman problem[C]∥Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. New York: ACM, 2020: 47-51. |
10 | ZHAO J F, FENG W M, YUAN J P. A novel two-level optimization strategy for multi-debris active removal mission in LEO[J]. Computer Modeling in Engineering & Sciences, 2020, 122(1): 149-174. |
11 | 朱阅訸. 面向大规模目标访问任务的飞行序列规划方法[D]. 长沙: 国防科技大学, 2020. |
ZHU Y H. Flight sequence planning method for large-scale-object visiting mission[D]. Changsha: National University of Defense Technology, 2020 (in Chinese). | |
12 | SHANG H B, LIU Y X. Assessing accessibility of main-belt asteroids based on Gaussian process regression[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(5): 1144-1154. |
13 | HUANG A Y, LUO Y Z, LI H N. Fast estimation of perturbed impulsive rendezvous via semi-analytical equality-constrained optimization[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 2383-2390. |
14 | ZHU Y H, LUO Y Z. Fast approximation of optimal perturbed long-duration impulsive transfers via artificial neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1123-1138. |
15 | ZHU Y H, LUO Y Z. Fast evaluation of low-thrust transfers via multilayer perceptions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(12): 2627-2637. |
16 | VIAVATTENE G, CERIOTTI M. Artificial neural networks for multiple NEA rendezvous missions with continuous thrust[J]. Journal of Spacecraft and Rockets, 2022, 59(2): 574-586. |
17 | CUI P Y, QIAO D, CUI H T, et al. Target selection and transfer trajectories design for exploring asteroid mission[J]. Science China Technological Sciences, 2010, 53(4): 1150-1158. |
18 | CERF M. Multiple space debris collecting mission—debris selection and trajectory optimization[J]. Journal of Optimization Theory and Applications, 2013, 156(3): 761-796. |
19 | HUANG A Y, LUO Y Z, LI H N. Global optimization of multiple-spacecraft rendezvous mission via decomposition and dynamics-guide evolution approach[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(1): 171-178. |
20 | WANG H J, YANG Z, ZHOU W G, et al. Online scheduling of image satellites based on neural networks and deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2019, 32(4): 1011-1019. |
21 | LITTLE B D, FRUEH C E. Space situational awareness sensor tasking: Comparison of machine learning with classical optimization methods[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(2): 262-273. |
22 | 刘冰雁, 叶雄兵, 周赤非, 等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5): 323630. |
LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323630 (in Chinese). | |
23 | IZZO D, M?RTENS M, PAN B F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3(4): 287-299. |
24 | SONG Y, GONG S P. Solar-sail trajectory design for multiple near-Earth asteroid exploration based on deep neural networks[J]. Aerospace Science and Technology, 2019, 91: 28-40. |
25 | IZZO D, ?ZTüRK E. Real-time guidance for low-thrust transfers using deep neural networks[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(2): 315-327. |
26 | ZAVOLI A, FEDERICI L. Reinforcement learning for robust trajectory design of interplanetary missions[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(8): 1440-1453. |
27 | SáNCHEZ-SáNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. |
28 | SCORSOGLIO A, D’AMBROSIO A, GHILARDI L, et al. Image-based deep reinforcement meta-learning for autonomous lunar landing[J]. Journal of Spacecraft and Rockets, 2022, 59(1): 153-165. |
29 | YANG B, LI S A, FENG J L, et al. Fast solver for J2-perturbed lambert problem using deep neural network[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(5): 875-884. |
30 | PENG H, BAI X L. Artificial neural network–based machine learning approach to improve orbit prediction accuracy[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1248-1260. |
31 | VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[DB/OL]. arXiv preprint: 1506.03134, 2015. |
32 | GU S S, HAO T, YAO H M. A pointer network based deep learning algorithm for unconstrained binary quadratic programming problem[J]. Neurocomputing, 2020, 390: 1-11. |
33 | GU S S, YAO H M. Pointer network based deep learning algorithm for the maximum clique problem[J]. International Journal on Artificial Intelligence Tools, 2021, 30(1): 2140004. |
34 | GU S S, YANG Y E. A deep learning algorithm for the max-cut problem based on pointer network structure with supervised learning and reinforcement learning strategies[J]. Mathematics, 2020, 8(2): 298. |
35 | 马一凡, 赵凡宇, 王鑫, 等. 基于改进指针网络的卫星对地观测任务规划方法[J]. 浙江大学学报(工学版), 2021, 55(2): 395-401. |
MA Y F, ZHAO F Y, WANG X, et al. Satellite earth observation task planning method based on improved pointer networks[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 395-401 (in Chinese). | |
36 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
37 | KIM Y. Convolutional neural networks for sentence classification[DB/OL]. arXiv preprint: 1408.5882, 2014. |
38 | NUDT. Problem data of the GTOC11: Candidate asteroids[EB/OL]. . |
39 | ESA. Problem data of the GTOC9: Debris orbits[EB/OL]. . |
40 | BANG J, AHN J. Multitarget rendezvous for active debris removal using multiple spacecraft[J]. Journal of Spacecraft and Rockets, 2019, 56(4): 1237-1247. |
/
〈 |
|
〉 |