ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimal servo system and modulation method of mechanical antenna array
Received date: 2023-03-14
Revised date: 2023-03-31
Accepted date: 2023-04-23
Online published: 2023-05-12
Supported by
National Natural Science Foundation of China(52077100);Aeronautical Science Foundation of China(201958052001)
As a new communication pattern, the Rotating Magnet-Based Mechanical Antenna (RMBMA) can significantly reduce both the size and the power consumption of the super-low frequency electromagnetic transmitter. However, it has the problems of weak radiated magnetic field intensity and low communication baud, limiting its practical applications. To solve these problems, this paper proposes a RMBMA array system based on the direct drive of permanent magnet synchronous motor. For the working conditions of high transient current and frequent speed switching of mechanical antenna signal modulation, a position difference coordinated-control strategy based on the deadbeat current prediction model is proposed, which improves the servo performance of the system and meets the application requirements. The proposed position difference coordinated-control parameters are designed, and the servo performance, stability and robustness of the system are theoretically verified. The high transmission rate and low bit error rate of the modulation signal of the mechanical antenna are realized. Finally, an experimental test platform for the mechanical antenna array system is built, and the distribution of the magnetic field strength in the near area and the servo performance of the drive system are tested experimentally. Compared with the single magnetic source, the magnetic field intensity in the near area of the system is doubled, showing that the problem of weak radiated magnetic field intensity can be effectively solved. The speed of the motor servo system has no overshoot and the adjustment time is ≤0.25 s, reaching the servo control index.
Zhenyang HAO , Ling QIN , Xin CAO , Qiyao ZHANG , Qiang ZHOU . Optimal servo system and modulation method of mechanical antenna array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(3) : 328692 -328692 . DOI: 10.7527/S1000-6893.2023.28692
1 | 丁宏. DARPA机械天线项目或掀起军事通信革命[J]. 现代军事, 2017(4): 71-73. |
DING H. DARPA mechanical antenna project or military communication revolution[J]. Conmilit, 2017(4): 71-73 (in Chinese). | |
2 | 崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报, 2020, 69(20): 171-183. |
CUI Y, WU M, SONG X, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica, 2020, 69(20): 171-183 (in Chinese). | |
3 | 施伟, 周强, 俞石云. 旋转永磁体机械天线的辐射效率与近区磁场[J]. 华中科技大学学报(自然科学版), 2023, 51(9): 33-39. |
SHI W, ZHOU Q, YU S Y. Radiation efficiency and magnetic field for spinning magnet as mechanical antenna[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(9): 33-39 (in Chinese). | |
4 | 周强, 姚富强, 施伟, 等. 机械式低频天线机理及其关键技术研究[J]. 中国科学: 技术科学, 2020, 50(1): 69-84. |
ZHOU Q, YAO F Q, SHI W, et al. Research on mechanism and key technology of mechanical antenna for a low-frequency transmission[J]. Scientia Sinica (Technologica), 2020, 50(1): 69-84 (in Chinese). | |
5 | 周强, 施伟, 刘斌, 等. 旋转永磁式机械天线的研究与实现[J]. 国防科技大学学报, 2020, 42(3): 128-136. |
ZHOU Q, SHI W, LIU B, et al. Research and practice of the mechanical antennas based on rotating permanent magnet[J]. Journal of National University of Defense Technology, 2020, 42(3): 128-136 (in Chinese). | |
6 | BURCH H C, GARRAUD A, MITCHELL M F, et al. Experimental generation of ELF radio signals using a rotating magnet[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6265-6272. |
7 | STRACHEN N, BOOSKE J, BEHDAD N. Mechanical super-low frequency (SLF) transmitter using electrically-modulated reluctance[C]∥ 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018: 67-68. |
8 | TASNIM K, ISLAM M N, HAQUE M, et al. A novel speed controller of ultra-high-speed PMSM for A-mechanically-based-antenna (AMEBA)[C]∥ 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 2022: 137-144. |
9 | TAREK M T BIN, DHARMASENA S, MADANAYAKE A, et al. Power-efficient data modulation for all-mechanical ULF/VLF transmitters[C]∥ 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018: 759-762. |
10 | GLICKSTEIN J S, LIANG J F, CHOI S, et al. Power-efficient ELF wireless communications using electro-mechanical transmitters[J]. IEEE Access, 2019, 8: 2455-2471. |
11 | 王龙飞, 李丽华, 修梦雷, 等. 机械天线通信技术研究现状[J]. 电讯技术, 2023, 63(4): 605-610. |
WANG L F, LI L H, XIU M L, et al. Research status of mechanical antenna communication technology[J]. Telecommunication Engineering, 2023, 63(4): 605-610 (in Chinese). | |
12 | ZHENG H, LI X, HAO Z Y, et al. Design of a high-speed permanent magnet motor with a spinning magnet source for mechanical antenna[C]∥ 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia). Piscataway: IEEE Press, 2021: 154-159. |
13 | 陈威振. 永磁同步电机在舵机位置伺服系统中的性能研究[D]. 南京: 南京航空航天大学, 2017: 8-20. |
CHEN W Z. The performance research on permanent magnet synchronous motor in EMA position servo system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 8-20 (in Chinese). | |
14 | XIAOYU W, ZHANG W H, ZHOU X, et al. Research on permanent magnet-type super-low-frequency mechanical antenna communication[J]. International Journal of Antennas and Propagation, 2021:1-16. |
15 | FAWOLE O C, TABIB-AZAR M. An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6927-6936. |
16 | 张继鹏, 苏锦智, 廖雪松, 等. 永磁同步电机的无差拍电流预测控制[J]. 微电机, 2017, 50(6): 56-59. |
ZHANG J P, SU J Z, LIAO X S, et al. A deadbeat current predictive control for permanent magnet synchronous motor[J]. Micromotors, 2017, 50(6): 56-59 (in Chinese). | |
17 | 胡寿松. 自动控制原理[M]. 4版. 北京: 科学出版社, 2001: 79-98, 195-246, 339-351. |
HU S S. Principle of automatic control[M]. 4th ed. Beijing: Science Press, 2001: 79-98, 195-246, 339-351 (in Chinese). | |
18 | YIN K X, GAO L, CHEN R P, et al. Adaptive deadbeat predictive current control for PMSM with feed forward method[J]. IEEE Access, 2021, 9: 101300. |
19 | 王庚. 永磁交流伺服系统电流预测控制及其电流静差消除算法[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
WANG G. Predictive current control and current error elimination for permanent magnet AC servo system[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). | |
20 | HARNEFORS L, PIETILAINEN K, GERTMAR L. Torque-maximizing field-weakening control: design, analysis, and parameter selection[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1): 161-168. |
21 | 刘艳, 李银伢, 戚国庆. 微型天线伺服系统保主导极点配置控制器设计[J]. 电光与控制, 2011, 18(6): 79-84. |
LIU Y, LI Y Y, QI G Q. Design of controllers with guaranteed dominant pole placement for miniaturized antenna servo system[J]. Electronics Optics & Control, 2011, 18(6): 79-84 (in Chinese). |
/
〈 |
|
〉 |