Fluid Mechanics and Vehicle Conceptual Design

Uncertainty quantification analysis of blunt cone radiation equilibrium temperature

  • Zhenkang ZHANG ,
  • Wanwu XU ,
  • Zhiyan LI ,
  • Wei YE
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha  410073,China
E-mail: cfdxww@nudt.edu.cn

Received date: 2023-03-09

  Revised date: 2023-04-11

  Accepted date: 2023-05-04

  Online published: 2023-05-12

Abstract

For long-range thermal tests in a combustion-heated hypersonic wind tunnel, it is necessary to quantify the uncertainty of the radiation equilibrium temperature distribution of the test model caused by the random fluctuation of the test conditions and identify the critical factors for engineering application. This study selects the total temperature of the experimental air flow, model emissivity, and model position as the input variables affecting the radiation equilibrium temperature distribution of the model by numerical simulation. The stochastic expansion between input parameters and radiation equilibrium temperature is established by the point-collocation Non-Intrusive Polynomial Chaos (NIPC) method. Uncertainties of radiation equilibrium temperature caused by random variation of the input variables are quantified. The results indicate that the radiation equilibrium temperature uncertainty of the blunt cone is the largest at the shoulder, which is 10.33%, and the uncertainty of the large area of the cone is 6.5%-7%. The sensitivity analysis reveals that the total temperature could significantly influence the uncertainty of the radiation equilibrium temperature in the stagnation area, while the model position has little influence on the uncertainty of the radiation equilibrium temperature distribution.

Cite this article

Zhenkang ZHANG , Wanwu XU , Zhiyan LI , Wei YE . Uncertainty quantification analysis of blunt cone radiation equilibrium temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528673 -528673 . DOI: 10.7527/S1000-6893.2023.28673

References

1 苟建军,肖爽,胡嘉欣,等. 高超声速飞行器气动热耗散、输运以转换技术研究进展[J]. 宇航学报202243(8): 984-999.
  GOU J J, XIAO S, HU J X, et al. Research progress of aerodynamic heat dissipation, transport and conversion technologies of hypersonic vehicles[J]. Journal of Astronautics202243(8): 984-999 (in Chinese).
2 师昆仑,邱云龙,陈伟芳,等. 传感器局部温度差异对压缩拐角热流测量的影响[J]. 航空学报202041(12): 124055.
  SHI K L, QIU Y L, CHEN W F, et al. Influence of local temperature difference of sensors on heat flow measurement of compression corner[J]. Acta Aeronautica et Astronautica Sinica202041(12): 124055 (in Chinese).
3 朱广生,聂春生,曹占伟,等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学201933(2): 1-10.
  ZHU G S, NIE C S, CAO Z W, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics201933(2): 1-10 (in Chinese).
4 马正雪, 罗振兵,赵爱红,等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报202243(S2): 727747.
  MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica202243(S2): 325-345 (in Chinese).
5 ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics201831(10): 1929-1953.
6 谌君某,陈星,毕志献. 高焓激波风洞试验技术综述[J]. 空气动力学学报201836(4): 543-554.
  SHEN J M, CHEN X, BI Z X. Review on experimental technology of high enthalpy shock tunnel[J]. Acta Aerodynamica Sinica201836(4): 543-554 (in Chinese).
7 周勇为,易仕和,程忠宇. 高超声速风洞调试和流场校测[J].国防科技大学学报200931(6): 57-61.
  ZHOU Y W, YI S H, CHENG Z Y. The test and calibration of hypersonic wind tunnel[J]. Journal of National University of Defense Technology200931(6): 57-61 (in Chinese).
8 WADHAMS T, MUNDY E, MACLEAN M. Ground test studies of the HIFiRE-1 transition experiment Part 1: Experimental results[J]. Journal of Spacecraft and Rockets200845(6): 1134-1148.
9 REES T W, BRUCE P, FISHER T B, et al. Merrifield numerical and experimental studies of the hypersonic flow around a cube at incidence[J]. Acta Astronautica2021183: 75-88.
10 SUDARSHAN B, JAGADEESH G, SARAVANAN S, Experimental investigation on aerothermal effects of forward-facing cylindrical and parabolic cavity in hypersonic ?ow [J]. Acta Astronautica2021185: 226-235.
11 MICHAL S, JOSEF K. Double probe recovery temperature anemometry[J]. Thermal Science and Engineering Progress202123: 100875.
12 KUMAR S, MAHULIKAR S P. Aero-thermal analysis of lifting body configurations in hypersonic flow[J]. Acta Astronautica2016126: 382-394.
13 B?HRK H, DITTERT C, WEIHS H. Sharp leading edge at hypersonic flight: Modeling and flight measurement[J]. Journal of spacecraft and rockets201453(5):1753-1760.
14 ZHAO Y T, CHAO Y, WANG X Y. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer2019136: 808-820.
15 向星皓,张毅锋,陈坚强,等. 横流转捩模型参数不确定度量化分析与应用研究[J]. 宇航学报202041(9):1141-1150.
  XIANG Z H, ZHANG Y F, CHEN J Q, et al. Uncertainty quantification analysis and application research on cross flow transition model parameters[J]. Journal of Astronautics202041(9): 1141-1150 (in Chinese).
16 SIMON F, GUILLEN P, SAGAUT P, et al. A PC-based approach to uncertain transonic aerodynamics[J]. Computer Methods in Applied Mechanics and Engineering2010299:1091-1099.
17 张伟,王小永,于剑,等. 来流导致的高超声速气动热不确定度量化分析[J]. 北京航空航天大学学报201844(5): 1102-1109.
  ZHANG W, WANG X Y, YU J, et al. Uncertainty quantification analysis in hypersonic aerodynamics due to freestream[J]. Journal of Beijing University of Aeronautics and Astronautics201844(5): 1102-1109 (in Chinese).
18 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal199432(8):1598-1605.
19 刘传振, 孟旭飞,刘荣健,等. 双后掠乘波体高超声速试验与数值分析[J]. 航空学报202243(9): 126015.
  LIU C Z, MENG X F, LIU R J, et al. Experimental and numerical investigation of hypersonic performance of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica202243(9): 126015 (in Chinese).
20 WIETING A R. Experimental study of shock wave interference heating on a cylindrical leading edge[R]. 1987.
21 张智超,高振勋,蒋崇文,等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报201541(4): 594-600.
  ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics201541(4): 594-600 (in Chinese).
22 闫文辉, 任立磊. 计算网格对气动力气动热数值模拟影响的研究[J]. 航空计算技术201747(2): 1-4.
  YAN W H, REN L L. Grid study on numerical of aerodynamic flowfield[J]. Aeronautical Computing Technique201747(2): 1-4 (in Chinese).
23 SMIRNOV N N, BETELIN V B, NIKITIN V F. Accumulation of errors in numerical simulations of chemically reacting gas dynamics[J]. Acta Astronautica2015117:338–355.
24 刘坤伟. 燃烧加热污染组分对高超气动/推进性能影响研究[D]. 合肥:中国科学技术大学,2016: 31-59.
  LIU K W. Study on the influence of combustion preheating vitiation on hypersonic aero-propulsion performance[D]. Hefei: University of Science and Technology of China, 2016: 31-59 (in Chinese).
Outlines

/