ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of backpressure on spray distribution characteristics of a gas-liquid pintle injector element
Received date: 2023-02-24
Revised date: 2023-03-20
Accepted date: 2023-05-05
Online published: 2023-05-12
Supported by
National Science Foundation Project(2019-JCJQ-ZQ-019);Innovation Research Groups of the National Natural Science Foundation of China(T2221002);the Young Scientists Fund of the National Natural Science Foundation of China(11902351);China Postdoctoral Science Foundation(2021MD703976)
The spray distribution characteristics of a radial-orifice gas-liquid pintle injector element were studied by experiments in different backpressure environments. A normal flow cold atomization experimental system which can provide stable backpressure in the range of 0.1-6.0 MPa and has multiple optical measurement windows was built. The atomization experiment was conducted by using filtered water and dry air instead of liquid oxygen and gas methane. The range of experimental backpressure was 0.1-1.5 MPa. The spray image of pintle injector element was obtained by using the background light imaging technology. The spray morphology and spatial distribution were studied by image processing.Results show that the spray formed by the gas-liquid pintle injector element in the backpressure environment was dense, and the spray boundary has obvious “turning” characteristic. According to the spray density distribution, the spray field is divided into three zones: spray core zone, spray boundary zone, and sparse spray zone. The influences of backpressure and local momentum ratio on radial spatial distribution range of spray are opposite. The smaller the backpressure is, the larger the local momentum ratio is, the larger the spray half angle is and the larger the envelope range of the windward boundary contour of spray is. In addition, compared with the spray half angle, the windward boundary contour of spray can better show the change of the spray spatial distribution range in the near field of the nozzle.
Ziguang LI , Peng CHENG , Qinglian LI , Xiao BAI , Pengjin CAO . Influence of backpressure on spray distribution characteristics of a gas-liquid pintle injector element[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(2) : 128614 -128614 . DOI: 10.7527/S1000-6893.2023.28614
1 | GILROY R G, SACKHEIM R L. The Lunar Module descent engine - A historical summary: AIAA-1989-2385 [R]. Reston: AIAA, 1989. |
2 | 雷娟萍, 兰晓辉, 章荣军, 等. 嫦娥三号探测器7500N变推力发动机研制[J]. 中国科学: 技术科学, 2014, 44(6): 569-575. |
LEI J P, LAN X H, ZHANG R J, et al. The development of 7500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica (Technologica), 2014, 44(6): 569-575 (in Chinese). | |
3 | LI S, JIANG X Q, TAO T. Guidance summary and assessment of the Chang’e-3 powered descent and landing[J]. Journal of Spacecraft and Rockets, 2016, 53(2): 258-277. |
4 | ZHAO W J. Tianwen-1 and China’s Mars exploration program[J]. National Science Review, 2021, 8(2): nwaa285. |
5 | 韩泉东, 刘锋, 潘一力, 等. 天问一号火星着陆巡视器推进系统特点及飞行分析[J]. 中国科学: 技术科学, 2022, 52(2): 237-244. |
HAN Q D, LIU F, PAN Y L, et al. Characteristics and flight performance of the Tianwen-1 Mars Lander propulsion system[J]. Scientia Sinica (Technologica), 2022, 52(2): 237-244 (in Chinese). | |
6 | LEE S J, KIM D, KOO J, et al. Spray characteristics of a pintle injector based on annular orifice area[J]. Acta Astronautica, 2020, 167: 201-211. |
7 | 张彬, 成鹏, 李清廉, 等. 液体横向射流在气膜作用下的破碎过程[J]. 物理学报, 2021, 70(5): 230-241. |
ZHANG B, CHENG P, LI Q L, et al. Breakup process of liquid jet in gas film[J]. Acta Physica Sinica, 2021, 70(5): 230-241 (in Chinese). | |
8 | 王凯, 雷凡培, 杨岸龙, 等. 针栓式喷注单元膜束撞击雾化混合过程数值模拟[J]. 航空学报, 2020, 41(9): 123802. |
WANG K, LEI F P, YANG A L, et al. Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123802 (in Chinese). | |
9 | FANG X X, SHEN C B. Study on atomization and combustion characteristics of LOX/methane pintle injectors[J]. Acta Astronautica, 2017, 136: 369-379. |
10 | SON M, YU K, KOO J, et al. Effects of momentum ratio and Weber number on spray half angles of liquid controlled pintle injector[J]. Journal of Thermal Science, 2015, 24(1): 37-43. |
11 | SON M, RADHAKRISHNAN K, KOO J, et al. Design procedure of a movable pintle injector for liquid rocket engines[J]. Journal of Propulsion and Power, 2017, 33(4): 858-869. |
12 | RADHAKRISHNAN K, SON M, LEE K, et al. Effect of injection conditions on mixing performance of pintle injector for liquid rocket engines[J]. Acta Astronautica, 2018, 150: 105-116. |
13 | ZHOU W Y, XU X, YANG Q C, et al. Experimental and numerical investigations on the spray characteristics of liquid-gas pintle injector[J]. Aerospace Science and Technology, 2022, 121: 107354. |
14 | CHENG P, LI Q L, XU S, et al. On the prediction of spray angle of liquid-liquid pintle injectors[J]. Acta Astronautica, 2017, 138: 145-151. |
15 | CHENG P, LI Q L, CHEN H Y. Flow characteristics of a pintle injector element[J]. Acta Astronautica, 2019, 154: 61-66. |
16 | 张波涛, 李文龙, 李平. 气液针栓喷注单元雾化角模型[J]. 航空动力学报, 2021, 36(4): 839-850. |
ZHANG B T, LI W L, LI P. Spray angle model of gas-liquid pintle injector unit[J]. Journal of Aerospace Power, 2021, 36(4): 839-850 (in Chinese). | |
17 | 张波涛, 李平, 王凯, 等. 针栓喷注器中心推进剂偏转角模型分析研究[J]. 推进技术, 2021, 42(7): 1534-1543. |
ZHANG B T, LI P, WANG K, et al. Central propellant deflection angle model of pintle injector[J]. Journal of Propulsion Technology, 2021, 42(7): 1534-1543 (in Chinese). | |
18 | 张波涛, 李平, 杨宝娥. 气液针栓喷注器在节流水平下的雾化角模型分析[J]. 宇航学报, 2021, 42(2): 249-258. |
ZHANG B T, LI P, YANG B E. Analysis of spray angle model of gas-liquid pintle injector at throttling level[J]. Journal of Astronautics, 2021, 42(2): 249-258 (in Chinese). | |
19 | 曹智程. 反压环境舱的设计及在雾化实验中的应用[J]. 火箭推进, 2007, 33(4): 28-31. |
CAO Z C. Design and application of pressure environmental chamber in atomization test[J]. Journal of Rocket Propulsion, 2007, 33(4): 28-31 (in Chinese). | |
20 | LEE K, SHIN D, SON M, et al. Flow visualization of cryogenic spray from a movable pintle injector[J]. Journal of Visualization, 2019, 22(4): 773-781. |
21 | BAI X, CHENG P, SHENG L Y, et al. Effects of backpressure on self-pulsation characteristics of liquid-centered swirl coaxial injectors[J]. International Journal of Multiphase Flow, 2019, 116: 239-249. |
22 | WANG X F, LEFEBVRE A H. Influence of ambient air pressure on pressure-swirl atomization[C]∥Proceedings of ASME 1987 International Gas Turbine Conference and Exhibition. New York: ASME, 2015. |
23 | KIM D, IM J H, KOH H, et al. Effect of ambient gas density on spray characteristics of swirling liquid sheets[J]. Journal of Propulsion and Power, 2007, 23(3): 603-611. |
24 | DE CORSO S M, KEMENY G A. Effect of ambient and fuel pressure on nozzle spray angle[J]. Journal of Fluids Engineering, 1957, 79(3): 607-614. |
25 | ZHAO F, ZHANG H, ZHANG H B, et al. Review of atomization and mixing characteristics of pintle injectors[J]. Acta Astronautica, 2022, 200: 400-419. |
26 | 张波涛, 李平, 王凯, 等. 变推力液体火箭发动机中针栓喷注器研究综述[J]. 宇航学报, 2020, 41(12): 1481-1489. |
ZHANG B T, LI P, WANG K, et al. Review on pintle injector of throttling liquid rocket engine[J]. Journal of Astronautics, 2020, 41(12): 1481-1489 (in Chinese). | |
27 | 吴里银. 超声速气流中液体横向射流破碎与雾化机理研究[D]. 长沙: 国防科学技术大学, 2016: 47-51. |
WU L Y. Breakup and atomization mechanism of liquid jet in supersonic crossflows[D]. Changsha: National University of Defense Technology, 2016: 47-51 (in Chinese). | |
28 | LEE S Y, TANKIN R S. Study of liquid spray (water) in a condensable environment (steam)[J]. International Journal of Heat and Mass Transfer, 1984, 27(3): 363-374. |
29 | ROTHE P H, BLOCK J A. Aerodynamic behavior of liquid sprays[J]. International Journal of Multiphase Flow, 1977, 3(3): 263-272. |
30 | 王兵, 张会强, 虞建丰, 等. 后台阶分离流动中大涡结构演变的数值模拟[J]. 力学季刊, 2003, 24(2): 166-173. |
WANG B, ZHANG H Q, YU J F, et al. Numerical simulation of large eddy structures evolution behind backward-facing step[J]. Chinese Quarterly of Mechanics, 2003, 24(2): 166-173 (in Chinese). | |
31 | SONG W, HWANG J, KOO J. Atomization of gelled kerosene by multi-hole pintle injector for rocket engines[J]. Fuel, 2021, 285: 119212. |
32 | ZHOU R, SHEN C B. Experimental study on the spray characteristics of a pintle injector element[J]. Acta Astronautica, 2022, 194: 255-262. |
33 | 王凯, 雷凡培, 张波涛, 等. 针栓式喷注单元雾化角模型分析[J]. 航空学报, 2020, 41(10): 123622. |
WANG K, LEI F P, ZHANG B T, et al. Analysis on spray angle model for pintle injector element[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123622 (in Chinese). | |
34 | HU R S, LI Q L, LI C, et al. Effects of an accompanied gas jet on transverse liquid injection in a supersonic crossflow[J]. Acta Astronautica, 2019, 159: 440-451. |
35 | LI P B, LI C Y, WANG H B, et al. Distribution characteristics and mixing mechanism of a liquid jet injected into a cavity-based supersonic combustor[J]. Aerospace Science and Technology, 2019, 94: 105401. |
36 | ZHU Y H, XIAO F, LI Q L, et al. LES of primary breakup of pulsed liquid jet in supersonic crossflow[J]. Acta Astronautica, 2019, 154: 119-132. |
/
〈 |
|
〉 |