Articles

Improvement of thruster test plume pressure measurement system based on TRIZ theory

  • Chun CAO ,
  • Long YANG
Expand
  • Beijing Institute of Aerospace Testing Technology,Beijing 100074,China
E-mail: 845682833@qq.com

Received date: 2023-02-24

  Revised date: 2023-03-31

  Accepted date: 2023-05-04

  Online published: 2023-05-12

Abstract

In the thruster altitude simulation test, the plume-field pressure is one of the key parameters characterizing the working properties of the thruster. Aiming at the failure of the pressure measuring system in detecting the variation of the plume-field pressure during working in one test of a solid propellant rocket thruster, we apply the Theory of Inventive Problem Solving (TRIZ) theory to problem analysis, based on which the fault reproduction is performed. Through cause-and-effect chain analysis, the major problem of the pressure measuring system is dedicatedly investigated and determined. Following the problem identification outcome, we propose the improved plume-field pressure measurement strategy in line with the resolution of physical contradiction and substance-field model, as well as the practical testing condition. The insulating paint is sprayed on the internal circuit surface of the pressure sensors to prevent the low-pressure discharge of electronic units. Experimental results reveal the technical efficacy of the revised pressure measurement strategy. Thus, the improved pressure measurement system is capable of more effectively detecting the plume-field pressure, satisfying the measurement demand of the thruster altitude simulation test.

Cite this article

Chun CAO , Long YANG . Improvement of thruster test plume pressure measurement system based on TRIZ theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 528613 -528613 . DOI: 10.7527/S1000-6893.2023.28613

References

1 姚德龙, 陈松. 固体火箭发动机羽流流速TDLAS测量方法研究[J]. 应用光学202041(2): 342-347.
  YAO D L, CHEN S. Study on TDLAS measurement method for plume velocity of solid rocket motor[J]. Journal of Applied Optics202041(2): 342-347 (in Chinese).
2 翁惠焱, 蔡国飙, 郑鸿儒, 等. 背景压强对电推进羽流场影响的数值模拟[J]. 北京航空航天大学学报202248(10): 1854-1862.
  WENG H Y, CAI G B, ZHENG H R, et al. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics202248(10): 1854-1862 (in Chinese).
3 唐林卡, 李晓轩, 孙朝翔, 等. 羽流问题对飞行器飞行影响研究[J]. 导弹与航天运载技术2021(6): 64-68.
  TANG L K, LI X X, SUN Z X, et al. Research on the influence of plume on vehicle flight[J]. Missiles and Space Vehicles2021(6): 64-68 (in Chinese).
4 吴靖, 蔡国飙. 基于压敏漆的多羽流气动力效应试验研究[J]. 北京航空航天大学学报202046(6): 1080-1088.
  WU J, CAI G B. Experimental research on aerodynamic force effect of multiple plumes based on pressure-sensitive paint technique[J]. Journal of Beijing University of Aeronautics and Astronautics202046(6): 1080-1088 (in Chinese).
5 薛凯心. 基于TRIZ理论的户外运动水杯创新设计研究[D]. 成都: 四川师范大学, 2021.
  XUE K X. Innovative design of outdoor sports cup based on TRIZ theory[D].Chengdu: Sichuan Normal University, 2021 (in Chinese).
6 吴晓. 基于TRIZ的阀门定位器创新设计[D]. 济南: 山东建筑大学, 2022.
  WU X. Innovative design of valve positioner based on TRIZ[D].Jinan: Shandong Jianzhu University, 2022 (in Chinese).
7 马延强, 肖军杰, 郭顺生, 等. 基于TRIZ理论的模切压力试验平台设计与分析[J]. 包装工程202243(13): 165-171.
  MA Y Q, XIAO J J, GUO S S, et al. Design and analysis of die-cutting pressure test platform based on TRIZ theory[J]. Packaging Engineering202243(13): 165-171 (in Chinese).
8 杨仓慧. 改进TRIZ理论在产品工艺设计中的应用研究[D]. 邯郸: 河北工程大学, 2020.
  YANG C H. Research on the application of improved TRIZ theory in product process design[D].Handan: Hebei University of Engineering, 2020 (in Chinese).
9 黄斌达, 周来水, 安鲁陵, 等. 集成TRIZ的机加夹具方案公理化设计[J]. 仪器仪表学报201738(4): 1031-1040.
  HUANG B D, ZHOU L S, AN L L, et al. Configuration axiomatic design method for the machining fixtures integrating TRIZ[J]. Chinese Journal of Scientific Instrument201738(4): 1031-1040 (in Chinese).
10 乔学昱. 基于TRIZ的柔性外骨骼系统设计与研究[D]. 淄博: 山东理工大学, 2019.
  QIAO X Y. Design and research on flexible exoskeleton system based on TRIZ[D].Zibo: Shandong University of Technology, 2019 (in Chinese).
11 孙永伟, 谢尔盖·伊克万科. TRIZ打开创新之门的金钥匙I[M], 北京:科学出版社, 2022: 57-77.
  SUN Y W, IKOVENKO S. TRIZ - the golden key for innovation I[M]. Beijing: Science Press, 2022: 57-77 (in Chinese).
12 欧陟. 功率元件低气压放电规律与绝缘可靠性分析[D]. 长沙: 国防科技大学, 2015.
  OU Z. A research on the discharge regularity and insulation reliability of power components under low pressure conditions[D].Changsha: National University of Defense Technology, 2015 (in Chinese).
13 王宇平, 夏玉林. 星载微波设备低气压放电及其防范[J]. 上海航天200522(): 65-68.
  WANG Y P, XIA Y L. Low pressure discharge of space-borne microwave equipment and its prevention[J]. Aerospace Shanghai (Chinese & English)200522(Sup 1): 65-68 (in Chinese).
14 张华, 宗益燕, 信太林, 等. 航天器单机产品通用低气压放电试验条件[J]. 航天器环境工程201633(6): 643-648.
  ZHANG H, ZONG Y Y, XIN T L, et al. General test conditions for low pressure discharge of spacecraft units[J]. Spacecraft Environment Engineering201633(6): 643-648 (in Chinese).
15 李航. 几种典型气体低气压放电行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 35-39.
  LI H. Research on discharge behavior of typical gases at low pressure[D].Harbin: Harbin Institute of Technology, 2018: 35-39 (in Chinese)
16 安笑笑, 陈俊, 苏璞, 等. 星载大功率固放局部低气压放电的防控技术[J]. 空间电子技术202219(1): 102-105.
  AN X X, CHEN J, SU P, et al. Prevention and control technology on partial low-pressure discharge of solid state power amplifiers in satellite-borne[J]. Space Electronic Technology202219(1): 102-105 (in Chinese).
17 张本栋, 江军, 李治, 等. 面向未来多电飞机的低气压下局部放电[J]. 航空学报202243(7): 325374.
  ZHANG B D, JIANG J, LI Z, et al. Partial discharge characteristics of future more electric aircraft under low air pressure[J]. Acta Aeronautica et Astronautica Sinica202243(7): 325374 (in Chinese).
18 刘尚, 张悦扬, 王亚楠, 等. 基于仿生设计的物理矛盾求解方法[J]. 机械设计与研究202036(6): 15-19, 23.
  LIU S, ZHANG Y Y, WANG Y N, et al. A method of root conflict problem solving based on bio-inspired design[J]. Machine Design & Research202036(6): 15-19,23 (in Chinese).
19 王麒郦, 李艳, 刘富, 等. 基于物理矛盾分析的带式输送机托辊专利规避设计[J]. 绿色包装2017(8): 41-46.
  WANG Q L, LI Y, LIU F, et al. Patent circumvention of belt conveyor based on physical contradiction analysis[J]. Green Packaging2017(8): 41-46 (in Chinese).
20 熊开封, 陈轲, 解鑫. 基于矛盾分析的144 MHz无线电测向机创新研究[J]. 机械设计201431(11): 8-13.
  XIONG K F, CHEN K, XIE X. Innovation study of the 144 MHz radio direction finder based on contradiction[J]. Journal of Machine Design201431(11): 8-13 (in Chinese).
21 孙永伟, 西蒙·利特文, 弗拉基米尔·格拉西莫夫, 等. TRIZ打开创新之门的金钥匙II[M], 北京:科学出版社, 2021: 85-129.
  SUN Y W, LITVIN S, GERASIMOV V, et al. TRIZ - the golden key for innovation II[M]. Beijing: Science Press, 2021: 85-129 (in Chinese).
22 董娅凡, 檀润华, 聂子丰, 等. 物质-场与设计过程复杂性理论集成的产品再设计过程模型研究[J]. 机械设计202037(2): 47-52.
  DONG Y F, TAN R H, NIE Z F, et al. Research on the product redesign process based on the sub-field analysis and the theory of design-centric complexity[J]. Journal of Machine Design202037(2): 47-52 (in Chinese).
23 段秀玲. 基于标准解的公理设计中解耦方法的研究[D]. 天津: 河北工业大学, 2016: 25-34.
  DUAN X L. Research on decoupling method in axiomatic design based on standard solution[D].Tianjin: Hebei University of Technology, 2016: 25-34 (in Chinese).
24 刘泽元, 冯尧, 梁硕, 等. 航天器热试验加热电缆绝缘自动测试系统的设计[J]. 电子测量技术201740(9): 252-256.
  LIU Z Y, FENG Y, LIANG S, et al. Design of cable insulation automatic test system used in spacecraft thermal test[J]. Electronic Measurement Technology201740(9): 252-256 (in Chinese).
25 林隽昊. 一种具备修复功能的任意大小电路板绝缘喷漆装置: CN111940215A[P]. 2020-11-17.
  LIN J H. Insulating paint spraying device for circuit boards of any sizes and with repairing function: CN111940215A[P]. 2020-11-17 (in Chinese).
Outlines

/