ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Measurement uncertainty evaluation method for accelerated degradation testing
Received date: 2022-04-01
Revised date: 2022-05-05
Accepted date: 2022-05-20
Online published: 2022-06-09
Supported by
Stable Supporting Fund of Science &Technology on Reliability and Environmental Engineering Laboratory(WDZC20220101);Fundamental Research Funds for the Central Universities(YWF-22-L-824)
Measurement dispersion, instrument errors and other factors bring about the measurement uncertainty problem in the accelerated degradation test. We propose a propagation and evaluation method for the measurement uncertainty of the accelerated degradation test to improve the accuracy and credibility of the test evaluation results. The sources of measurement uncertainty in accelerated degradation tests are firstly introduced and the propagation effect of measurement uncertainty in the parameter estimation process of the Wiener process accelerated degradation model analyzed. The Guide to the expression of Uncertainty in Measurement (GUM) method and Monte Carlo method (MCM) are then used respectively to evaluate the influence of performance observation data measurement uncertainty on product reliability evaluation results at normal stress levels. Finally, the accelerated degradation test of an actual type polymer sensor is conducted to verify the proposed methods, and comparative analysis of the results verifies the effectiveness of the proposed methods.
Hongxuan GUO , Fuqiang SUN . Measurement uncertainty evaluation method for accelerated degradation testing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(7) : 227226 -227226 . DOI: 10.7527/S1000-6893.2023.27226
1 | ZHANG Z X, SI X S, HU C H, et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796. |
2 | YE Z S, XIE M. Stochastic modelling and analysis of degradation for highly reliable products[J]. Applied Stochastic Models in Business and Industry, 2015, 31(1): 16-32. |
3 | Taylor John R.. 误差分析导论: 物理测量中的不确定度[M]. 王中宇, 译. 北京: 高等教育出版社, 2015: 3-9. |
TAYLOR J R. An introduction to error analysis[M]. WANG Z Y, trans. Beijing: Higher Education Press, 2015: 3-9 (in Chinese). | |
4 | 王承忠. 测量不确定度与误差的区别及在评定中应注意的问题[J]. 物理测试, 2004, 22(1): 1-5. |
WANG C Z. Distinction between error and uncertainty of measurement and some problems need attention in uncertainty evaluation[J]. Physics Examination and Testing, 2004, 22(1): 1-5 (in Chinese). | |
5 | 范巧成, 匡荣, 邢成岗, 等. 试论测量不确定度与误差理论的关系[J]. 计量学报, 2017, 38(3): 380-384. |
FAN Q C, KUANG R, XING C G, et al. On the relationship between measurement uncertainty and error theory[J]. Acta Metrologica Sinica, 2017, 38(3): 380-384 (in Chinese). | |
6 | International Organization for Standardization (ISO)/ International Electrotechnical Commission (IEC). Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement: Guide 98-3:2008[S]. Switzerland: ISO/IEC, 2008. |
7 | 国家质量监督检验检疫总局. 测量不确定度评定与表示: [S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Evaluation and expression of uncertaintv in measurement: [S]. Beijing: Standards Press of China, 2013 (in Chinese). | |
8 | 国家质量监督检验检疫总局. 用蒙特卡洛法评定测量不确定度技术规范: [S]. 北京: 中国质检出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Monte Carlo method for evaluation of measurement uncertainty: [S]. Beijing: China Standards Press, 2013 (in Chinese). | |
9 | FU J F, SONG G B, DE SCHUTTER B. Influence of measurement uncertainty on parameter estimation and fault location for transmission lines[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(1): 337-345. |
10 | PUEO M, ACERO R, LOPE M A, et al. Measurement uncertainty evaluation model in radial composite gear inspection[J]. Precision Engineering, 2019, 60: 222-234. |
11 | WOJTY?A M, ROSNER P, FORBES A B, et al. Verification of sensitivity analysis method of measurement uncertainty evaluation[J]. Measurement: Sensors, 2021, 18: 100274. |
12 | 薛长利, 张名毅, 丁勤, 等. 测量不确定度在国内航天领域的应用现状[J]. 航天器环境工程, 2013, 30(6): 652-658. |
XUE C L, ZHANG M Y, DING Q, et al. The measuring uncertainty in domestic aerospace field[J]. Spacecraft Environment Engineering, 2013, 30(6): 652-658 (in Chinese). | |
13 | 冉学臣. 疲劳试验结果测量不确定度评定[J]. 理化检验(物理分册), 2017, 53(10): 717-719. |
RAN X C. Measurement uncertainty evaluation on fatigue testing results[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2017, 53(10): 717-719 (in Chinese). | |
14 | 沈凤霞. 力学环境试验测量不确定度分析[J]. 强度与环境, 2010, 37(1): 58-64. |
SHEN F X. Measurement uncertainty analysis of dynamic environment test[J]. Structure & Environment Engineering, 2010, 37(1): 58-64 (in Chinese). | |
15 | 周佩. 气动先导电磁阀可靠性试验测量不确定度评定与可靠性分析[D]. 武汉: 武汉理工大学, 2013: 28-37. |
ZHOU P. Evaluation on measurement uncertainty and reliability analysis of the pneumatic pilot solenoid valve[D]. Wuhan: Wuhan University of Technology, 2013: 28-37 (in Chinese). | |
16 | SUN F Q, GUO H X, LIU J C. Reliability modeling of the bivariate deteriorating product with both monotonic and non-monotonic degradation paths[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 971-983. |
17 | 李晓阳, 姜同敏. 基于加速退化模型的卫星组件寿命与可靠性评估方法[J]. 航空学报, 2007, 28(S1): 100-103. |
LI X Y, JIANG T M. Constant-stress accelerated degradation testing of satellite assemblies[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(Sup 1): 100-103 (in Chinese). | |
18 | 张国华. 最小二乘法线性回归分析及其测量不确定度探讨[J]. 中国石油和化工标准与质量, 2020, 40(15): 72-73. |
ZHANG G H. Least square linear regression analysis and its measurement uncertainty discussion[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(15): 72-73 (in Chinese). | |
19 | 倪永勤, 杨留方, 孙昭洪, 等. 变量具误差的多元线性回归不确定度评定方法[J]. 云南大学学报(自然科学版), 2008, 30(S1): 245-250. |
NI Y Q, YANG L F, SUN Z H, et al. Method of evaluating uncertainties of multivariate linear regression for variables with errors[J]. Journal of Yunnan University (Natural Sciences Edition), 2008, 30(Sup 1): 245-250 (in Chinese). | |
20 | 冯小娟. 二元线性回归的不确定度评定方法[J]. 西安建筑科技大学学报(自然科学版), 2000, 32(3): 304-306. |
FENG X J. Method for estimating uncertainties about two variable linear regression[J]. Journal of Xi’an University of Architecture &Technology, 2000, 32(3): 304-306 (in Chinese). |
/
〈 |
|
〉 |