ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress of electrically controlled solid propulsion technology
Received date: 2023-03-17
Revised date: 2023-04-07
Accepted date: 2023-04-28
Online published: 2023-05-06
Supported by
National Natural Science Foundation of China(T2221002)
Electrically controlled solid propulsion technology, including propellant-related technology and engine technology, realizes repeated engine start and real-time adjustable thrust by using a new type of propellant with electrically controlled combustion. With the advantages of being simple and reliable, this thrust adjustment method has a wide range of applications in the field of power systems for missile weapons and satellites. However, electrically controlled solid propellants are not mature enough, and various formulation systems need to be further optimized. Although electrically controlled solid engines have been verified, there is still a large distance between the engine performance and actual application requirements. This paper comprehensively compares the technologies related with the electrically controlled solid propulsion, summarizes the latest research results in the field of this technology, and finally predicts the future development of electrically controlled solid propulsion technology, so as to provide some reference for the subsequent research.
Jianjun WU , Zejun HU , Zhicheng HE , Yu ZHANG , Yang OU , Zhengxue MA , Qinhui PENG , Yuxuan ZHONG . Research progress of electrically controlled solid propulsion technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528716 -528716 . DOI: 10.7527/S1000-6893.2023.28716
1 | 田维平, 王立武, 王伟. 固体火箭发动机技术发展和面临的关键技术问题[J]. 固体火箭技术, 2021, 44(1): 4-8. |
TIAN W P, WANG L W, WANG W. Technological development and key technical problems in solid rocket motors[J]. Journal of Solid Rocket Technology, 2021, 44(1): 4-8 (in Chinese). | |
2 | 武丹, 陈文杰, 司学龙, 等. 大型固体火箭发动机发展趋势及关键技术分析[J]. 武汉大学学报(工学版), 2021, 54(2): 102-107. |
WU D, CHEN W J, SI X L, et al. Research on development trend and key technologies of large solid rocket motor[J]. Engineering Journal of Wuhan University, 2021, 54(2): 102-107 (in Chinese). | |
3 | 任庆华, 刘双, 张海龙, 等. 固体小运载火箭发动机的现状及发展趋势分析[J]. 现代防御技术, 2016, 44(5): 40-45. |
REN Q H, LIU S, ZHANG H L, et al. Status and evolution trend analysis of solid small launch rocket[J]. Modern Defence Technology, 2016, 44(5): 40-45 (in Chinese). | |
4 | 庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6. |
PANG A M, LI X P. Innovation and development law of solid propellant technology[J]. Chinese Journal of Energetic Materials, 2015, 23(1): 3-6 (in Chinese). | |
5 | 侯晓, 付鹏, 武渊. 固体火箭发动机能量管理技术及其新进展[J]. 固体火箭技术, 2017, 40(1): 1-6, 23. |
HOU X, FU P, WU Y. Energy management technology of SRM and its development[J]. Journal of Solid Rocket Technology, 2017, 40(1): 1-6, 23 (in Chinese). | |
6 | 陆正亮, 张翔, 于永军, 等. 使用固体火箭发动机的快速机动卫星质量矩控制研究[J]. 推进技术, 2017, 38(5): 1165-1172. |
LU Z L, ZHANG X, YU Y J, et al. Study on satellite mass moment control for fast orbit maneuver using solid rocket motor[J]. Journal of Propulsion Technology, 2017, 38(5): 1165-1172 (in Chinese). | |
7 | 李娟, 李江, 王毅林, 等. 喉栓式变推力发动机性能研究[J]. 固体火箭技术, 2007, 30(6): 505-509. |
LI J, LI J, WANG Y L, et al. Study on performance of pintle controlled thrust solid rocket motor[J]. Journal of Solid Rocket Technology, 2007, 30(6): 505-509 (in Chinese). | |
8 | 汤亮, 邓康清, 余小波. 多脉冲固体火箭发动机发展现状[C]∥第四届空天动力联合会议论文集, 2019: 62-68. |
TANG L, DENG K Q, YU X B. Development status of multi-pulse solid rocket motor[C]∥Proceedings of 4th Joint Conference on Aerospace Power, 2019: 62–68 (in Chinese). | |
9 | 李悦, 胡春波, 胡加明, 等. 粉末火箭发动机研究进展[J]. 推进技术, 2018, 39(8): 1681-1695. |
LI Y, HU C B, HU J M, et al. Progress of powder rocket engine technology[J]. Journal of Propulsion Technology, 2018, 39(8): 1681-1695 (in Chinese). | |
10 | 于金山, 李卓. 凝胶(膏体)推进剂火箭发动机研究与发展综述[C]∥第三届空天动力联合会议论文集, 2018: 30-34. |
YU J S, LI Z. Review of research and development of gel (paste) propellant rocket engines[C]∥Proceedings of 3rd Joint Conference on Aerospace Power, 2018: 30-34 (in Chinese). | |
11 | 段卜仁, 章皓男, 华佐豪, 等. 一种燃速可调的光控固体推进剂燃烧特性[J]. 含能材料, 2021, 29(7): 584-591. |
DUAN B R, ZHANG H N, HUA Z H, et al. Combustion characteristics of the laser-controlled solid propellant with adjustable burning rate[J]. Chinese Journal of Energetic Materials, 2021, 29(7): 584-591 (in Chinese). | |
12 | 何志成, 夏智勋, 胡建新, 等. 电控固体推进剂制备方法及性能研究进展[J]. 含能材料, 2020, 28(12): 1190-1199. |
HE Z C, XIA Z X, HU J X, et al. Review on preparation methods and properties of electrically controlled solid propellants[J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1190-1199 (in Chinese). | |
13 | 程健, 张泽华, 李福伟, 等. 微波在含能材料中的应用研究进展[J]. 含能材料, 2023, 31(2): 201-212. |
CHENG J, ZHANG Z H, LI F W, et al. Review on microwave application in energetic materials[J]. Chinese Journal of Energetic Materials, 2023, 31(2): 201-212 (in Chinese). | |
14 | KATZAKIAN A, CHEUNG H, GRIX C E, et al. Solid solution vehicle airbag clean gas generator propellant: US5847315[P]. 1998-12-08. |
15 | KATZAKIAN A, GRIX C. High performance electrically controlled solution solid propellant: US20120103479[P]. 2012-05-03. |
16 | GRIX C E, SAWKA W N. Family of modifiable high performance electrically controlled propellants and explosives: US8888935[P]. 2014-11-18. |
17 | 张伟, 鲍立荣, 沈瑞琪, 等. 一种高能高力学性能电控固体推进剂: CN110759800A[P]. 2020-02-07. |
ZHANG W, BAO L R, SHEN R Q, et al. Electrically controlled solid propellant with high energy and high mechanical properties: CN110759800A[P]. 2020-02-07 (in Chinese). | |
18 | BAO L R, ZHANG W, ZHANG X J, et al. Impact of MWCNT/Al on the combustion behavior of hydroxyl ammonium nitrate (HAN)-based electrically controlled solid propellant[J]. Combustion and Flame, 2020, 218: 218-228. |
19 | 黄印, 张小平, 庞爱民, 等. 一种电控固体推进剂及其制备方法: CN109942356B[P]. 2022-03-04. |
HUANG Y, ZHANG X P, PANG A M, et al. An electrically controlled solid propellant and its preparation method: CN109942356B[P]. 2022-03-04 (in Chinese). | |
20 | 黄印, 张小平, 庞爱民, 等. 新型智能化电控固体推进剂技术研究进展[C]∥第四届空天动力联合会议论文集. 2019: 36-48. |
HUANG Y, ZHANG X P, PANG A M, et al. Research progress of new intelligent electronically controlled solid propellant technology∥Proceedings of 4th Joint Conference on Aerospace Power. 2019: 36-48 (in Chinese). | |
21 | 黄印, 陈宗山, 王拯, 等. 一种高强度电控固体推进剂: CN106365935A[P]. 2017-02-01. |
HUANG Y, CHEN Z S, WANG Z, et al. A high strength electrically controlled solid propellant: CN106365935A[P]. 2017-02-01 (in Chinese). | |
22 | 任士栋. 可控推力固体推进剂研究现状及三维聚乙烯醇凝胶合成[D]. 哈尔滨: 哈尔滨工业大学, 2020: 22-32. |
REN S D. Research status of controllable thrust solid propellant and synthesis of three-dimensional polyvinyl alcohol gel[D]. Harbin: Harbin Institute of Technology, 2020: 22-32 (in Chinese). | |
23 | VILLARREAL J K, LOEHR R D. Electrically operated propellants: US20140174313[P]. 2014-06-26. |
24 | DANFORTH J C, SUMMERS M H, GARRETT D G. Method of producing solid propellant element: US10023505[P]. 2018-07-17. |
25 | 胡建新, 李洋, 何志成, 等. 电控固体推进剂热分解和燃烧性能研究[J]. 推进技术, 2018, 39(11): 2588-2594. |
HU J X, LI Y, HE Z C, et al. Study on thermal decomposition and combustion performance of electrically controlled solid propellant[J]. Journal of Propulsion Technology, 2018, 39(11): 2588-2594 (in Chinese). | |
26 | HE Z C, XIA Z X, HU J X, et al. Lithium-perchlorate/polyvinyl-alcohol-based aluminized solid propellants with adjustable burning rate[J]. Journal of Propulsion and Power, 2019, 35(3): 512-519. |
27 | 何志成, 夏智勋, 胡建新, 等. 铝粉对高氯酸盐基电控固体推进剂感度的影响[J]. 含能材料, 2020, 28(1): 52-55. |
HE Z C, XIA Z X, HU J X, et al. Effect of aluminum powder on sensitivity of perchlorate-based electrical controlling solid propellant[J]. Chinese Journal of Energetic Materials, 2020, 28(1): 52-55 (in Chinese). | |
28 | GNANAPRAKASH K, YANG M, YOH J J. Thermal decomposition behaviour and chemical kinetics of tungsten based electrically controlled solid propellants[J]. Combustion and Flame, 2022, 238: 111752. |
29 | GOBIN B, HARVEY N, YOUNG G. Combustion characteristics of electrically controlled solid propellants using polymer electrolytes[J]. Combustion and Flame, 2022, 244: 112291. |
30 | 李纲, 王健, 任晓婷, 等. 固体推进剂氧化剂的共晶改性研究进展[J]. 固体火箭技术, 2021, 44(5): 622-629. |
LI G, WANG J, REN X T, et al. Research progress of co-crystal modification of solid propellant oxidants[J]. Journal of Solid Rocket Technology, 2021, 44(5): 622-629 (in Chinese). | |
31 | 王倩, 刘庆, 莫顺聘, 等. 凝胶聚合物电解质研究进展[J]. 中国塑料, 2021, 35(10): 147-153. |
WANG Q, LIU Q, MO S P, et al. Research progress of gel polymer electrolyte[J]. China Plastics, 2021, 35(10): 147-153 (in Chinese). | |
32 | WANG S Z, LYU J Y, HE W, et al. Thermal decomposition and combustion behavior of ion conductive PEO-PAN based energetic composites[J]. Combustion and Flame, 2021, 230: 111421. |
33 | 李雅津, 谢五喜, 刘运飞, 等. ADN及其固体推进剂燃烧特性的研究进展[J]. 火炸药学报, 2021, 44(2): 130-138. |
LI Y J, XIE W X, LIU Y F, et al. Research progress on combustion characteristics of ADN and ADN-based propellants[J]. Chinese Journal of Explosives & Propellants, 2021, 44(2): 130-138 (in Chinese). | |
34 | 张伟, 王志文, 鲍立荣, 等. 一种低点火延迟时间ADN基电控固体推进剂及其制备方法: CN114835535A[P]. 2022-08-02. |
ZHANG W, WANG Z W, BAO L R, et al. A kind of low ignition delay time ADN-based electronically controlled solid propellant and its preparation method: CN114835535A[P]. 2022-08-02 (in Chinese). | |
35 | MA X Y, JIN S H, XIE W X, et al. A novel green electrically controlled solid propellant with good electrical response and high energy performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128550. |
36 | HIATT A T. Evaluation of electric solid propellant responses to electrical factors and electrode configurations[D]. Huntsville: The University of Alabama in Huntsville, 2018. |
37 | HIATT A, FREDERICK R A. Laboratory experimentation and basic research investigating electric solid propellant electrolytic characteristics[C]∥Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
38 | SUMMERS M H, VILLARREAL J K, LANGHENRY M T, et al. Electrode ignition and control of electrically operated propellants: US20180003130[P]. 2018-01-04. |
39 | DULLIGAN M, LAKE J, ADKISON P, et al. Electrically controlled extinguishable solid propellant motors: US20080092521[P]. 2008-04-24. |
40 | DULLIGAN M, LAKE J, ADKISON P, et al. Methods of controlling solid propellant ignition, combustion, and extinguishment: US20080087003[P]. 2008-04-17. |
41 | 王新强. 电控固体推进剂动力装置技术研究[D]. 西安: 航天动力技术研究院, 2017: 13-21. |
WANG X Q. Research on electronically controlled solid propellant power plant [D]. Xi’an: Aerospace Propulsion Technology Research Institute, 2017: 13-21 (in Chinese). | |
42 | 王新强, 邓康清, 李洪旭, 等. 电控固体推进剂点火技术研究[J]. 固体火箭技术, 2017, 40(3): 313-318. |
WANG X Q, DENG K Q, LI H X, et al. Experimental investigation of electrically stimulated ignition characteristics of electric solid propellant[J]. Journal of Solid Rocket Technology, 2017, 40(3): 313-318 (in Chinese). | |
43 | 仝瑞杰, 王志强, 邹涛, 等. 基于正负交错螺旋型单端面电极的电控固体发动机试验验证[C]∥第六届空天动力联合会议论文集, 2022: 5-12. |
TONG R J, WANG Z Q, ZOU T, et al. Test verification of electronically controlled solid engine based on positive and negative staggered spiral single-ended face electrodes[C]∥Proceedings of 6th Joint Conference on Aerospace Power, 2022: 5-12 (in Chinese). | |
44 | 仝瑞杰, 魏晓婷, 杨振华, 等. 一种用于电控固体火箭发动机的电极装置: CN112160849A[P]. 2021-01-01. |
TONG R J, WEI X T, YANG Z H, et al. An electrode device for electronically controlled solid rocket engines: CN112160849A[P]. 2021-01-01 (in Chinese). | |
45 | BAO L R, WANG H, WANG Z W, et al. Controllable ignition, combustion and extinguishment characteristics of HAN-based solid propellant stimulated by electric energy[J]. Combustion and Flame, 2022, 236: 111804. |
46 | LI Y, XIA Z X, MA L K, et al. Ignition and extinction characteristics of electrically controlled solid propellants[J]. Journal of Propulsion and Power, 2023, 39(3): 340-350. |
47 | LI Y, XIA Z X, HU J X, et al. Experimental investigation of the ignition and combustion characteristics of electrically controlled solid propellant[J]. Acta Astronautica, 2021, 184: 167-179. |
48 | GNANAPRAKASH K, YOH J J. Understanding the pyroelectric combustion behaviour of metallized electrically controlled solid propellants[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5677-5686. |
49 | WANG Z W, XIE H M, XIANG S J, et al. Multi-stage combustion characteristics of sodium perchlorate/lithium perchlorate-based electrically controlled solid propellant[J]. Chemical Engineering Journal, 2023, 456: 140958. |
50 | ZAMIR I, BEN-REUVEN M, GANY A, et al. Investigation of electrically controlled ammonium nitrate-epoxy solid propellant at high pressures[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(3): 477-483. |
51 | DENNY M D. Measurement of solid rocket propellant burning rate using X-ray imaging[D]. Huntsville: The University of Alabama in Huntsville, 2015: 75-91. |
52 | 黄印, 张小平, 庞爱民, 等. 微推进器电控固体推进剂常压点火燃烧效率影响因素研究[J]. 固体火箭技术, 2022, 45(5): 703-713. |
HUANG Y, ZHANG X P, PANG A M, et al. Influence factors of ignition combustion efficiency of electrically controlled solid propellant for micro-thruster at atmospheric pressure[J]. Journal of Solid Rocket Technology, 2022, 45(5): 703-713 (in Chinese). | |
53 | 王新强, 邓康清, 李洪旭, 等. 一种电控固体推进剂燃速测试装置: CN206132718U[P]. 2017-04-26. |
WANG X Q, DENG K Q, LI H X, et al. An electronically controlled solid propellant combustion rate test device: CN206132718U[P]. 2017-04-26 (in Chinese). | |
54 | 鲍立荣, 汪辉, 王志文, 等. HAN基电控固体推进剂电热耦合特性及燃烧特性实验研究[J]. 推进技术, 2021, 42(6): 1410-1417. |
BAO L R, WANG H, WANG Z W, et al. Experimental study on electrothermal coupling and combustion characteristics of HAN-based electrically controlled solid propellant[J]. Journal of Propulsion Technology, 2021, 42(6): 1410-1417 (in Chinese). | |
55 | BAO L R, WANG H, ZHENG T T, et al. Exploring the influences of conductive graphite on hydroxylammonium nitrate (HAN)-based electrically controlled solid propellant[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(11): 1790-1798. |
56 | 梁基照. 高分子复合材料导电学[M]. 广州: 广东科技出版社, 2019. |
LIANG J Z. Conductivity of polymer composites[M]. Guangzhou: Guangdong Science & Technology Press, 2019 (in Chinese). | |
57 | 益小苏. 复合导电高分子材料的功能原理[M]. 北京: 国防工业出版社, 2004. |
YI X S. Function principle of filled conductive polymer composites[M]. Beijing: National Defense Industry Press, 2004 (in Chinese). | |
58 | 杨勇. 固态电化学[M]. 北京: 化学工业出版社, 2017. |
YANG Y. Solid state electrochemistry[M]. Beijing: Chemical Industry Press, 2017 (in Chinese). | |
59 | 程红波, 陶博文, 黄印, 等. 国外电控可熄火固体推进剂技术研究进展[J]. 化学推进剂与高分子材料, 2016, 14(6): 1-6. |
CHENG H B, TAO B W, HUANG Y, et al. Research progress in technology of electrically controlled extinguishable solid propellant abroad[J]. Chemical Propellants & Polymeric Materials, 2016, 14(6): 1-6 (in Chinese). | |
60 | 鲍立荣, 张伟, 陈永义, 等. HAN基电控固体推进剂的热分解和电导率特性[J]. 含能材料, 2019, 27(9): 743-748. |
BAO L R, ZHANG W, CHEN Y Y, et al. Thermal decomposition and conductivity characteristics of HAN-based electrically controlled solid propellants[J]. Chinese Journal of Energetic Materials, 2019, 27(9): 743-748 (in Chinese). | |
61 | WINIE T, AROF A K, THOMAS S. Polymer electrolytes: Characterization techniques and energy applications[M]. Weinheim: Wiley-VCH, 2019. |
62 | ZHOU X Y, FU J L, LI Z, et al. Research progress on solid polymer electrolytes[J]. Chinese Science Bulletin, 2022, 67(9): 842-859. |
63 | SUN Z J, DING S J. PEO-based polymer electrolytes in lithium ion batteries[J]. Chinese Science Bulletin, 2018, 63(22): 2280-2295. |
64 | 孟楠. 锂空气电池聚合物电解质及其与电极界面稳定性的研究[D]. 北京: 北京科技大学, 2022: 55-69. |
MENG N. Polymer electrolyte for Li-air battery and its stabilization integration with electrodes[D]. Beijing: University of Science and Technology Beijing, 2022: 55-69 (in Chinese). | |
65 | 鲍立荣, 汪辉, 陈永义, 等. 硝酸羟胺基绿色推进剂研究进展[J]. 含能材料, 2020, 28(12): 1200-1210. |
BAO L R, WANG H, CHEN Y Y, et al. Review on hydroxylammonium nitrate based green propellant[J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1200-1210 (in Chinese). | |
66 | CHAI W S, CHEAH K H, WU M H, et al. A review on hydroxylammonium nitrate (HAN) decomposition techniques for propulsion application[J]. Acta Astronautica, 2022, 196: 194-214. |
67 | 陈君, 张涛, 刘瀛龙. 硝酸羟胺基推进系统研究与应用进展[J]. 兵器装备工程学报, 2018, 39(12): 25-30. |
CHEN J, ZHANG T, LIU Y L. Research and application progress of high performance green hydroxylamine nitrate based aerospace propulsion system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(12): 25-30 (in Chinese). | |
68 | MENG H A, KHARE P, RISHA G, et al. Decomposition and ignition of HAN-based monopropellants by electrolysis[C]∥Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
69 | KHARE P, YANG V, MENG H, et al. Thermal and electrolytic decomposition and ignition of HAN-water solutions[J]. Combustion Science and Technology, 2015, 187(7): 1065-1078. |
70 | CHAI W S, CHEAH K H, MENG H, et al. Experimental and analytical study on electrolytic decomposition of HAN-water solution using graphite electrodes[J]. Journal of Molecular Liquids, 2019, 293: 111496. |
71 | KOH K S, CHIN J, WAHIDA KU CHIK T F. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions[J]. Propulsion and Power Research, 2013, 2(3): 194-200. |
72 | CHUNG K, ROZUMOV E, KAMINSKY D, et al. Development of electrically controlled energetic materials (ECEM)[J]. ECS Transactions, 2013, 50(40): 59-66. |
73 | BAIRD J K, LANG J R, HIATT A T, et al. Electrolytic combustion in the polyvinyl alcohol plus hydroxylammonium nitrate solid propellant[J]. Journal of Propulsion and Power, 2017, 33(6): 1589-1590. |
74 | BAIRD J K, FREDERICK R A. Thermochemistry of combustion in polyvinyl alcohol + hydroxylammonium nitrate[J]. Aerospace, 2021, 8(5): 142. |
75 | BAIRD J K, HUANG S, FREDERICK R A. Space charge limited conduction in polyvinyl alcohol + hydroxylammonium nitrate solid propellant[J]. Journal of Propulsion and Power, 2020, 36(3): 479-484. |
76 | 段炼, 胡建新, 李洋, 等. 通电启动时固体推进剂电流密度仿真分析[J]. 固体火箭技术, 2018, 41(1): 28-34. |
DUAN L, HU J X, LI Y, et al. Current density simulation of electrically controlled solid propellant when energized[J]. Journal of Solid Rocket Technology, 2018, 41(1): 28-34 (in Chinese). | |
77 | 段炼. 电控固体推进技术探索研究[D]. 重庆: 重庆大学, 2019: 32-35. |
DUAN L. Exploration and research on electrically controlled solid propulsion technology[D]. Chongqing: Chongqing University, 2019: 32-35 (in Chinese). | |
78 | 胡松启, 康博, 张研, 等. 二茂铁类衍生物对HAN/PVA热分解影响研究[J]. 火炸药学报, 2020, 43(2): 149-154, 160. |
HU S Q, KANG B, ZHANG Y, et al. Effect of ferrocene derivatives on the thermal decomposition of HAN/PVA[J]. Chinese Journal of Explosives & Propellants, 2020, 43(2): 149-154, 160 (in Chinese). | |
79 | HE Z C, XIA Z X, HU J X, et al. Thermal decomposition and kinetics of electrically controlled solid propellant through thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 2187-2195. |
80 | WEI C Y, ROGERS W J, MANNAN M S. Thermal decomposition hazard evaluation of hydroxylamine nitrate[J]. Journal of Hazardous Materials, 2006, 130(1-2): 163-168. |
81 | 程红波, 王拯, 陶博文, 等. 硝酸羟胺热分解特性及其稳定化技术研究[J]. 化学推进剂与高分子材料, 2018, 16(4): 80-85. |
CHENG H B, WANG Z, TAO B W, et al. Study on thermal decomposition characteristics of hydroxylammonium nitrate and its stabilization technology[J]. Chemical Propellants & Polymeric Materials, 2018, 16(4): 80-85 (in Chinese). | |
82 | 王新强, 邓康清, 李洪旭, 等. HAN基绿色推进剂点火技术研究进展[J]. 火箭推进, 2017, 43(2): 72-76. |
WANG X Q, DENG K Q, LI H X, et al. Research progress on ignition of HAN-based green propellant[J]. Journal of Rocket Propulsion, 2017, 43(2): 72-76 (in Chinese). | |
83 | 刘建国, 安振涛, 张倩, 等. Fe3+掺杂对硝酸羟胺热稳定性的影响及其机理[J]. 火炸药学报, 2017, 40(1): 53-58. |
LIU J G, AN Z T, ZHANG Q, et al. Effects of doping of Fe3+ on the thermal stability of hydroxylamine nitrate and its mechanism[J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 53-58 (in Chinese). | |
84 | AMROUSSE R, HORI K, FETIMI W, et al. HAN and ADN as liquid ionic monopropellants: Thermal and catalytic decomposition processes[J]. Applied Catalysis B: Environmental, 2012, 127: 121-128. |
85 | LEE H, LITZINGER T A. Thermal decomposition of HAN-based liquid propellants[J]. Combustion and Flame, 2001, 127(4): 2205-2222. |
86 | LEE Y J, LITZINGER T A. Combustion chemistry of HAN, TEAN, and XM46[J]. Combustion Science and Technology, 1999, 141(1-6): 19-36. |
87 | 刘建国, 安振涛, 张倩, 等. 硝酸羟胺的热稳定性评估及热分解机理研究[J]. 材料导报, 2017, 31(4): 145-152. |
LIU J G, AN Z T, ZHANG Q, et al. Thermal stability evaluation and thermal decomposition mechanism of hydroxylamine nitrate[J]. Materials Review, 2017, 31(4): 145-152 (in Chinese). | |
88 | ESPARZA A A. Thermoanalytical studies on the decomposition of energetic ionic liquids[D]. El Paso: The University of Texas at El Paso, 2020: 51-64. |
89 | ESPARZA A A, FERGUSON R E, CHOUDHURI A, et al. Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution[J]. Combustion and Flame, 2018, 193: 417-423. |
90 | OXLEY J C, BROWER K R. Thermal decomposition of hydroxylamine nitrate[C]∥1988 Los Angeles Symposium, 1988. |
91 | LEE H, LITZINGER T A. Chemical kinetic study of HAN decomposition[J]. Combustion and Flame, 2003, 135(1-2): 151-169. |
92 | LIU J G, AN Z T, ZHANG Q A, et al. Thermal decomposition of hydroxylamine nitrate studied by differential scanning calorimetry analysis and density functional theory calculations[J]. Progress in Reaction Kinetics and Mechanism, 2017, 42(4): 334-343. |
93 | 闫科, 张彦威, 王永昌, 等. 高氯酸锂分解动力学研究[J]. 固体火箭技术, 2013, 36(3): 353-357, 367. |
YAN K, ZHANG Y W, WANG Y C, et al. Kinetic study of lithium perchlorate decomposition mechanism[J]. Journal of Solid Rocket Technology, 2013, 36(3): 353-357, 367 (in Chinese). | |
94 | 闫科. 高氯酸锂非均相催化分解实验研究[D]. 杭州: 浙江大学, 2015. |
YAN K. Experimental study on heterogeneous catalytic decomposition of lithium perchlorate[D]. Hangzhou: Zhejiang University, 2015 (in Chinese). | |
95 | 何志成. 改性PVA基电控固体推进剂及性能研究[D]. 长沙: 国防科技大学, 2021: 26-56. |
HE Z C. Research on composition/performance of modified PVA-based electrically controlled solid propellant [D]. Changsha: National University of Defense Technology, 2021: 26-56 (in Chinese). | |
96 | LI Y, XIA Z X, MA L K, et al. Study on the thermal decomposition behavior and products of poly(vinyl alcohol) and its LiClO4 composites via Py/GC/MS[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(12): 7031-7042. |
97 | AGGARWAL R, PATEL I, THIRUMALVALAVAN. A study on electrically controlled solid propellants[J]. International Journal of Engineering Sciences & Research Technology, 2015,4(10): 557-561. |
98 | SAWKA W N, MCPHERSON M. Electrical solid propellants: A safe, micro to macro propulsion technology[C]∥ Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
99 | 胡建新, 段炼, 何志成, 等. 一种推力可控的多脉冲固体火箭发动机: CN108488005A[P]. 2020-02-07. |
HU J X, DUAN L, HE Z C, et al. A thrust-controlled multi-pulse solid rocket engine: CN108488005A[P]. 2020-02-07 (in Chinese). | |
100 | ANDREW N, TED F, IVAN G, et al. SpinSat mission overview[C]∥27th Annual AIAA/USU Conference on Small Satellites. Logan: Utah State University, 2013. |
101 | GLASCOCK M S, ROVEY J, WILLIAMS S, et al. Plasma plume characterization of electric solid propellant micro pulsed plasma thrusters[C]∥Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015. |
102 | GLASCOCK M S, ROVEY J, WILLIAMS S, et al. Observation of late-time ablation in electric solid propellant pulsed microthrusters[C]∥Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
103 | GLASCOCK M S, ROVEY J. Electric solid propellant ablation in a pulsed electric thruster[C]∥Proceedings of the 2018 Joint Propulsion Conference. Reston: AIAA, 2018. |
104 | GLASCOCK M S, ROVEY J L, POLZIN K A. Impulse and performance measurements of electric solid propellant in a laboratory electrothermal ablation-fed pulsed plasma thruster[J]. Aerospace, 2020, 7(6): 70. |
105 | GLASCOCK M S, DREW P D, ROVEY J L, et al. Thermodynamic properties of hydroxylammonium nitrate-based electric solid propellant plasma[J]. Journal of Thermophysics and Heat Transfer, 2020, 34(3): 522-529. |
106 | GLASCOCK M S, ROVEY J L, POLZIN K A. Electric solid propellant ablation in an arc discharge[J]. Journal of Propulsion and Power, 2019, 35(5): 984-993. |
107 | GLASCOCK M S, ROVEY J L, WILLIAMS S, et al. Plume characterization of electric solid propellant pulsed micro-thrusters[J]. Journal of Propulsion and Power, 2017, 33(4): 870-880. |
108 | GLASCOCK M S. Characterization of a green electric solid propellant for electric propulsion[D]. Rolla: Missouri University of Science and Technology, 2019: 30-40. |
109 | ROVEY J L, LYNE C T, MUNDAHL A J, et al. Review of multimode space propulsion[J]. Progress in Aerospace Sciences, 2020, 118: 100627. |
110 | ROVEY J, LYNE C T, MUNDAHL A J, et al. Review of chemical-electric multimode space propulsion[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
111 | KOEHLER F B, LANGHENRY M, SUMMERS M, et al. Electric propellant solid rocket motor thruster results enabling small satellites[C]∥Small Satellite Conference, 2017. |
112 | KOEHLER F, MEISNER M, VOLLIN J. Multi-pulse solid rocket motor technology[C]∥Proceedings of the AIAA Propulsion and Energy 2020 Forum. Reston: AIAA, 2020. |
/
〈 |
|
〉 |