ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Micro-energy analysis method for time-varying error of aero-optical effects
Received date: 2023-03-15
Revised date: 2023-04-03
Accepted date: 2023-04-23
Online published: 2023-04-28
Supported by
National Natural Science Foundation of China(61973018);National Defense Preresearch Foundation of China(JCKY2016601C005);Science and Technology on Space Intelligent Control Laboratory of China(ZDSYS-2018-03)
Imaging distortion of optical sensors caused by the aero-optical effects seriously interferes with the navigation accuracy during atmospheric flight of hypersonic vehicles with autonomous celestial navigation. To address this problem, we propose a method to explore the time-varying error of the aero-optical effect at the level of micro-energy change mechanism. This method analyzes the interaction mechanism between photons and turbulent molecules based on the photon transport theory, establishes the photon transport model in the high-speed flow field, and calculates the energy distribution of photons in the turbulent transport process. By establishing the aero-optical effect evaluation function in the micro-photon system, we obtain the time-varying error description of the aero-optical effect, unify the relationship between the micro-energy analysis and the macro-geometric optics, and carry out comparative verification through numerical simulation analysis and wind tunnel test results, thereby providing a new perspective for the research on the aero-optical effect of hypersonic vehicles.
Bo YANG , He YU , Zichen FAN . Micro-energy analysis method for time-varying error of aero-optical effects[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 128703 -128703 . DOI: 10.7527/S1000-6893.2023.28703
1 | DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. |
2 | GAO B B, LI W M, HU G G, et al. Mahalanobis distance-based fading cubature Kalman filter with augmented mechanism for hypersonic vehicle INS/CNS autonomous integration[J]. Chinese Journal of Aeronautics, 2022, 35(5): 114-128. |
3 | YU Y J, XU J F, XIONG Z. SINS/CNS nonlinear integrated navigation algorithm for hypersonic vehicle[J]. Mathematical Problems in Engineering, 2015, 2015: 1-7. |
4 | 李嘉兴, 王大轶, 鄂薇, 等. 大动态干扰下基于光学图像的自主导航技术[J]. 航空学报, 2021, 42(11): 524907. |
LI J X, WANG D Y, E W, et al. Autonomous navigation technology based on optical image under large dynamic disturbance[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524907 (in Chinese). | |
5 | 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8): 623686. |
CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623686 (in Chinese). | |
6 | YANG B, HU J, LIU X X. A study on simulation method of starlight transmission in hypersonic conditions[J]. Aerospace Science and Technology, 2013, 29(1): 155-164. |
7 | GUO G M, LIU H, ZHANG B. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space[J]. Applied Optics, 2016, 55(17): 4741-4751. |
8 | YANG B, FAN Z C, YU H. Aero-optical effects simulation technique for starlight transmission in boundary layer under high-speed conditions[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1929-1941. |
9 | SAXTON-FOX T, MCKEON B J, GORDEYEV S. Effect of coherent structures on aero-optic distortion in a turbulent boundary layer[J]. AIAA Journal, 2019, 57(7): 2828-2839. |
10 | MATHEWS E, WANG K, WANG M, et al. Turbulence scale effects and resolution requirements in aero-optics[J]. Applied Optics, 2021, 60(15): 4426-4433. |
11 | SUTTON G W. Aero-optical foundations and applications[J]. AIAA Journal, 1985, 23(10): 1525-1537. |
12 | WYCKHAM C. Aero-optic Characteristics of Turbulent Compressible Boundary Layers[D]. Princeton: Princeton University, 2006. |
13 | JUMPER E J, GORDEYEV S. Physics and measurement of aero-optical effects: Past and present[J]. Annual Review of Fluid Mechanics, 2017, 49: 419-441. |
14 | 丁浩林, 易仕和, 付佳, 等. 超声速湍流边界层气动光学效应的实验研究[J]. 红外与激光工程, 2016, 45(10): 192-198. |
DING H L, YI S H, FU J, et al. Experimental investigation of aero-optical effect due to supersonic turbulent boundary layer[J]. Infrared and Laser Engineering, 2016, 45(10): 192-198 (in Chinese). | |
15 | CHEN Z, YI S H, TIAN L F, et al. Flow visualization of supersonic laminar flow over a backward-facing step via NPLS[J]. Shock Waves, 2013, 23(4): 299-306. |
16 | YANG Z Y. Large-eddy simulation: past, present and the future[J]. Chinese Journal of Aeronautics, 2015, 28(1): 11-24. |
17 | ZHENG L D, YANG Y, QIANG G L, et al. Numerical analysis for wake flow field of Ahmed model based on a nonlinear-LRN/DES turbulence model[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2022, 32(4): 1348-1374. |
18 | SUN X W, YANG X L, LIU W. Numerical investigation on aero-optical reduction for supersonic turbulent mixing layer[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(2): 239-254. |
19 | DING H L, YI S H, XU Y, et al. Recent developments in the aero-optical effects of high-speed optical apertures: From transonic to high-supersonic flows[J]. Progress in Aerospace Sciences, 2021, 127: 100763. |
20 | XU L F, ZHOU Z C, REN T R. Study of a weak scattering model in aero-optic simulations and its computation[J]. Journal of the Optical Society of America A, 2017, 34(4): 594-601. |
21 | SONG X L, WANG R, WEI J S, et al. Simulation study of the transmission of photons in mouse brain using Monte Carlo method[C]∥ SPIE Photonex and Vacuum Expo. Proc SPIE 11575, Biophotonics and Biomedical Microscopy, Online Only. 2020, 11575: 13-20. |
22 | SHEN H, WANG G. A tetrahedron-based inhomogeneous Monte Carlo optical simulator[J]. Physics in Medicine and Biology, 2010, 55(4): 947-962. |
23 | OUGHSTUN K, CARTWRIGHT N. On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion[J]. Optics Express, 2003, 11(13): 1541. |
24 | STAMNES K, THOMAS G E, STAMNES J J. Radiative Transfer in the Atmosphere and Ocean[M]. Cambridge, UK: Cambridge University Press, 2017. |
25 | MAHAN G D. Quantum boltzmann equation for photons[J]. Journal of Mathematical Physics, 1996, 37(9): 4333-4351. |
26 | LIU L H, ZHANG L, TAN H P. Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 97(3): 446-456. |
27 | LIU L H. Finite volume method for radiation heat transfer in graded index medium[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(1): 59-66. |
28 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
29 | 陆小革, 易仕和, 何霖, 等. 高分辨率激波/边界层干扰时间演化过程分析[J]. 航空学报, 2022, 43(1): 626147. |
LU X G, YI S H, HE L, et al. Time evolution process of high resolution shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626147 (in Chinese). | |
30 | 王洪平, 高琪, 王晋军. 基于层析PIV的湍流边界层涡结构统计研究[J]. 中国科学: 物理学 力学 天文学, 2015, 45(12): 73-86. |
WANG H P, GAO Q, WANG J J. The statistical study of vortex structure in turbulent boundary layer flow based on Tomographic PIV[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(12): 73-86 (in Chinese). | |
31 | YANG B, FAN Z C, YU H, et al. A new method for analyzing aero-optical effects with transient simulation[J]. Sensors, 2021, 21(6): 2199. |
32 | 樊子辰. 高速飞行器导航中的气动光学效应方法研究[D]. 北京: 北京航空航天大学,2021. |
FAN Z C. Aero-Optical Effects in Navigation of High Speed Aircrafts[D]. Beijing: Beihang University, 2021 (in Chinese). | |
33 | WANG K, WANG M. Aero-optics of subsonic turbulent boundary layers[J]. Journal of Fluid Mechanics, 2012, 696: 122-151. |
34 | WHITE M, VISBAL M. Aero-optics of compressible boundary layers in the transonic regime[C]∥ Proceedings of the 43rd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2012: AIAA2012-2984. |
/
〈 |
|
〉 |