ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A review of characterization methods for parameter uncertainty in engineering design based on numerical simulation
Received date: 2023-02-24
Revised date: 2023-03-22
Accepted date: 2023-04-21
Online published: 2023-04-21
Supported by
National Natural Science Foundation of China(52175214);The Basic Research Program(514010103-302)
Numerical simulation technology is widely used in modern engineering design. However, uncertainties are ubiquitous in simulation models: geometric parameters, working loads, environmental conditions, etc., which directly affect the credibility of numerical simulation results. Especially for equipment with strict requirements on performance and reliability, ignoring these uncertainties will cause potential risks. Therefore, it is of great significance to carry out uncertainty quantification in engineering design based on numerical simulation. Uncertainty characterization is not only a prerequisite for accurate uncertainty quantification and optimal design but also an important support for engineering refinement design. This paper elucidates the uncertainty factors in engineering design based on numerical simulation. Considering the manifestation and available information of the uncertainty factors, the current mainstream characterization methods of parameter uncertainty according to the two categories of probabilistic and non-probabilistic characterization methods are summarized. The basic ideas, main principles, application scope, and development and application of various characterization methods in engineering practice are introduced. The basic ideas of uncertainty propagation based on uncertainty characterization results are also briefly explained. Finally, the research direction of uncertainty characterization is prospected.
Fenfen XIONG , Zexian LI , Yu LIU , Tangfan XIAHOU . A review of characterization methods for parameter uncertainty in engineering design based on numerical simulation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(22) : 28611 -028611 . DOI: 10.7527/S1000-6893.2023.28611
1 | HUANG S X, JIAO J L, GUEDES S C. Uncertainty analyses on the CFD-FEA co-simulations of ship wave loads and whipping responses[J]. Marine Structures, 2022, 82: 103129. |
2 | 游景玉. 仿真技术在实现《中国制造2025》中的重要作用[J]. 计算机仿真, 2016, 33(1): 1-3, 85. |
YOU J Y. The importance of simulation technology in realizing “made in China 2025”[J]. Computer Simulation, 2016, 33(1): 1-3, 85 (in Chinese). | |
3 | 程跃, 程文明, 郑严, 等. 基于混沌粒子群算法的结构可靠性优化设计[J]. 中南大学学报(自然科学版), 2011, 42(3): 671-676. |
CHENG Y, CHENG W M, ZHENG Y, et al. Structural reliability optimal design based on chaos particle swarm optimization[J]. Journal of Central South University (Science and Technology), 2011, 42(3): 671-676 (in Chinese). | |
4 | OBERKAMPF W L, HELTON J C, JOSLYN C A, et al. Challenge problems: uncertainty in system response given uncertain parameters[J]. Reliability Engineering & System Safety, 2004, 85(1-3): 11-19. |
5 | SCHAEFER J A, ROMERO V J, SCHAFER S R, et al. Approaches for quantifying uncertainties in computational modeling for aerospace applications[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1520. |
6 | 夏侯唐凡, 陈江涛, 邵志栋, 等. 随机和认知不确定性框架下的CFD模型确认度量综述[J]. 航空学报, 2022, 43(8): 025716. |
XIAHOU T F, CHEN J T, SHAO Z D, et al. Model validation metrics for CFD numerical simulation under aleatory and epistemic uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 025716 (in Chinese). | |
7 | 张显雄, 张志田, 张伟峰, 等. 五种湍流涡粘模型在二维方柱绕流数值模拟中的对比研究[J]. 空气动力学学报, 2018, 36(2): 339-349. |
ZHANG X X, ZHANG Z T, ZHANG W F, et al. Comparison of five eddy viscosity turbulence models in numerical simulation of flow over a two-dimensional square cylinder[J]. Acta Aerodynamica Sinica, 2018, 36(2): 339-349 (in Chinese). | |
8 | ERB A J, HOSDER S. Uncertainty analysis of turbulence model closure coefficients for shock wave-boundary layer interaction simulations[C]∥ 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 2077. |
9 | 赵训友, 林景松, 童晓艳. 基于Richardson外推法的CFD中离散不确定度估计[J]. 系统仿真学报, 2014, 26(10): 2315-2320. |
ZHAO X Y, LIN J S, TONG X Y. Discretization uncertainty estimation in CFD based on Richardson extrapolation method[J]. Journal of System Simulation, 2014, 26(10): 2315-2320 (in Chinese). | |
10 | CINNELLA P, DWIGHT R, EDELING W. Review of uncertainty quantification in turbulence modelling to date[C]∥ SIAM Uncertainty Quantification Conference. Lausanne, 2016. |
11 | LABBE S G, GILBERT M G, KEHOE M W. Possible deficiencies in predicting transonic aerodynamics on the X-43A:NASA/TM-2009-215711NESC-RP-04-02/03-002-E[R]. Washington, D.C.: NASA, 2009. |
12 | LI J, GAO Z H, HUANG J T, et al. Robust design of NLF airfoils[J]. Chinese Journal of Aeronautics, 2013, 26(2): 309-318. |
13 | WU X J, ZHANG W W, SONG S F. Robust aerodynamic shape design based on an adaptive stochastic optimization framework[J]. Structural and Multidisciplinary Optimization, 2018, 57(2): 639-651. |
14 | MAANI R EL, MAKHLOUFI A, RADI B, et al. Reliability-based design optimization with frequency constraints using a new safest point approach[J]. Engineering Optimization, 2018, 50(10): 1715-1732. |
15 | CHEN Z Z, WU Z H, LI X K, et al. A multiple-design-point approach for reliability-based design optimization[J]. Engineering Optimization, 2019, 51(5): 875-895. |
16 | XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations: A review[J]. Progress in Aerospace Sciences, 2019, 108: 1-31. |
17 | PARRY G W. The characterization of uncertainty in probabilistic risk assessments of complex systems[J]. Reliability Engineering & System Safety, 1996, 54(2-3): 119-126. |
18 | 陈鑫, 王刚, 叶正寅, 等. CFD不确定度量化方法研究综述[J]. 空气动力学学报, 2021, 39(4): 1-13. |
CHEN X, WANG G, YE Z Y, et al. A review of uncertainty quantification methods for Computational Fluid Dynamics[J]. Acta Aerodynamica Sinica, 2021, 39(4): 1-13 (in Chinese). | |
19 | 李维. 基于不确定性分析与模型验证的计算模型可信性研究[D]. 西安: 西北工业大学, 2015. |
LI W. Research on credibility of computing model based on uncertainty analysis and model verification[D].Xi’an: Northwestern Polytechnical University, 2015 (in Chinese). | |
20 | CHEN R T, ZHANG C, WANG S P, et al. Reliability estimation of mechanical seals based on bivariate dependence analysis and considering model uncertainty[J]. Chinese Journal of Aeronautics, 2021, 34(5): 554-572. |
21 | TANG J, WU Z G, YANG C. Epistemic uncertainty quantification in flutter analysis using evidence theory[J]. Chinese Journal of Aeronautics, 2015, 28(1): 164-171. |
22 | 陈江涛, 章超, 吴晓军, 等. 考虑数值离散误差的湍流模型选择引入的不确定度量化[J]. 航空学报, 2021, 42(9): 625741. |
CHEN J T, ZHANG C, WU X J, et al. Quantification of turbulence model-selection uncertainties considering discretization errors[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625741 (in Chinese). | |
23 | WU K Y, LI J L. A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification[J]. Journal of Computational Physics, 2016, 321: 1098-1109. |
24 | XIU D B, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137-167. |
25 | WITTEVEEN J, DOOSTAN A. Comparison of stochastic collocation methods for uncertainty quantification of the transonic RAE 2822 airfoil[R]. Stanford: Workshop on Quantification of CFD Uncertainties, 2009:1-30. |
26 | LEE S H, CHEN W. A comparative study of uncertainty propagation methods for black-box-type problems[J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 239-253. |
27 | PALAR P S, TSUCHIYA T, PARKS G T. Multi-fidelity non-intrusive polynomial chaos based on regression[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 579-606. |
28 | 祝宏宇, 王刚, 刘毅, 等. 考虑不确定性的超声速双翼气动特性分析[J]. 西北工业大学学报, 2019, 37(5): 909-917. |
ZHU H Y, WANG G, LIU Y, et al. Uncertainty analysis of supersonic biplane’s aerodynamic characteristics[J]. Journal of Northwestern Polytechnical University, 2019, 37(5): 909-917 (in Chinese). | |
29 | 董欣心, 刘莉, 葛佳昊, 等. 捆绑火箭气动载荷分布不确定性分析[J]. 北京航空航天大学学报, 2022, 48(3): 464-472. |
DONG X X, LIU L, GE J H, et al. Uncertainty analysis of aerodynamic load distribution on strap-on launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 464-472 (in Chinese). | |
30 | KONAKLI K, SUDRET B. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions[J]. Journal of Computational Physics, 2016, 321: 1144-1169. |
31 | SUN X, LEE E, CHOI J I. Quantification of measurement error effects on conductivity reconstruction in electrical impedance tomography[J]. Inverse Problems in Science and Engineering, 2020, 28(12): 1669-1693. |
32 | 叶坤, 叶正寅, 屈展, 等. 高超声速舵面热气动弹性不确定性及全局灵敏度分析[J]. 力学学报, 2016, 48(2): 278-289. |
YE K, YE Z Y, QU Z, et al. Uncertainty and global sensitivity analysis of hypersonic control surface aerothermoelastic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289 (in Chinese). | |
33 | KANG R, ZHANG Q Y, ZENG Z G, et al. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics[J]. Chinese Journal of Aeronautics, 2016, 29(3): 571-579. |
34 | PENMETSA R C, GRANDHI R V. Efficient estimation of structural reliability for problems with uncertain intervals[J]. Computers & Structures, 2002, 80(12): 1103-1112. |
35 | SHAH H, HOSDER S, WINTER T. A mixed uncertainty quantification approach using evidence theory and stochastic expansions[J]. International Journal for Uncertainty Quantification, 2015, 5(1): 21-48. |
36 | LI L Y, LU Z Z, LI W. Importance measure system of fuzzy and random input variables and its solution by point estimates[J]. Science China Technological Sciences, 2011, 54(8): 2167-2179. |
37 | LIU X, YIN L R, HU L, et al. An efficient reliability analysis approach for structure based on probability and probability box models[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 167-181. |
38 | 赵辉, 胡星志, 张健, 等. 湍流模型系数不确定度对翼型绕流模拟的影响[J]. 航空学报, 2019, 40(6): 122581. |
ZHAO H, HU X Z, ZHANG J, et al. Effects of uncertainty in turbulence model coefficients on flow over airfoil simulation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122581 (in Chinese). | |
39 | FERSON S, JOSLYN C A, HELTON J C, et al. Summary from the epistemic uncertainty workshop: consensus amid diversity[J]. Reliability Engineering & System Safety, 2004, 85(1-3): 355-369. |
40 | SANKARARAMAN S, MAHADEVAN S. Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data[J]. Reliability Engineering & System Safety, 2011, 96(7): 814-824. |
41 | PENG X, LI D H, WU H P, et al. Uncertainty analysis of composite laminated plate with data-driven polynomial chaos expansion method under insufficient input data of uncertain parameters[[J]. Composite Structures, 2019, 209(1):625-633. |
42 | ZAMAN K, RANGAVAJHALA S, MCDONALD M P, et al. A probabilistic approach for representation of interval uncertainty[J]. Reliability Engineering & System Safety, 2011, 96(1): 117-130. |
43 | HELTON J C, JOHNSON J D, OBERKAMPF W L, et al. Representation of analysis results involving aleatory and epistemic uncertainty[J]. International Journal of General Systems, 2010, 39(6): 605-646. |
44 | SHA L R, YANG Y E. Structural reliability optimization design based on artificial neural network[J]. Advanced Materials Research, 2014, 834-836: 1877-1880. |
45 | HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12): 2721-2730. |
46 | 章超, 刘骁, 陈江涛, 等. 烧蚀热响应计算中的不确定性传播分析方法研究[J]. 宇航学报, 2020, 41(11): 1401-1409. |
ZHANG C, LIU X, CHEN J T, et al. Study on uncertainty propagation analysis method in ablative thermal response calculation[J]. Journal of Astronautics, 2020, 41(11): 1401-1409 (in Chinese). | |
47 | PREMPRANEERACH P, HOVER F S, TRIANTAFY- LLOU M S, et al. Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods[J]. Reliability Engineering & System Safety, 2010, 95(6): 632-646. |
48 | 崔威杰, 曹博, 陈义学. 基于贝叶斯MCMC方法的高斯烟羽模型不确定性分析[J]. 核技术, 2020, 43(4): 51-57. |
CUI W J, CAO B, CHEN Y X. Uncertainty analysis of Gaussian plume model based on Bayesian MCMC method[J]. Nuclear Techniques, 2020, 43(4): 51-57 (in Chinese). | |
49 | 孙颖娜, 王红星, 惠琳. 流域汇流系统随机不确定性研究[J]. 黑龙江大学工程学报, 2011, 2(2): 16-18. |
SUN Y N, WANG H X, HUI L. Study on random uncertainty in the system of watershed flow concentration[J]. Journal of Engineering of Heilongjiang University, 2011, 2(2): 16-18 (in Chinese). | |
50 | ISKANDARANI M, WANG S T, SRINIVASAN A, et al. An overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations[J]. Journal of Geophysical Research, 2016, 121(4): 2789-2808. |
51 | FENG K X, LU Z Z, YUN W Y. Aircraft icing severity analysis considering three uncertainty types[J]. AIAA Journal, 2019, 57(4): 1514-1522. |
52 | DEGENNARO A M, ROWLEY C W, MARTINELLI L. Uncertainty quantification for airfoil icing using polynomial chaos expansions[J]. Journal of Aircraft, 2015, 52(5): 1404-1411. |
53 | 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 4版. 北京: 高等教育出版社, 2008. |
SHENG Z, XIE S Q, PAN C Y. Probability and mathematical statistics[M]. 4th ed. Beijing: Higher Education Press, 2008 (in Chinese). | |
54 | 戴家佳, 杨爱军, 杨振海. 极大似然估计算法研究[J]. 高校应用数学学报A辑, 2009, 24(3): 275-280. |
DAI J J, YANG A J, YANG Z H. An advanced algorithm for equations of maximum likelihood estimation[J]. Applied Mathematics A Journal of Chinese Universities (Ser.A), 2009, 24(3): 275-280 (in Chinese). | |
55 | 茆诗松. 贝叶斯统计[M]. 北京: 中国统计出版社, 1999. |
MAO S S. Bayesian statistics[M]. Beijing: China Statistics Press, 1999 (in Chinese). | |
56 | 张文生, 罗强, 蒋良潍, 等. 小样本岩土参数下考虑矩估计偏差的土质边坡可靠度分析[J]. 岩土力学, 2019, 40(1): 315-324. |
ZHANG W S, LUO Q, JIANG L W, et al. Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters[J]. Rock and Soil Mechanics, 2019, 40(1): 315-324 (in Chinese). | |
57 | KIM T, LEE G, YOUN B D. Uncertainty characterization under measurement errors using maximum likelihood estimation: cantilever beam end-to-end UQ test problem[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 323-333. |
58 | 张诺亚. 基于贝叶斯估计的瞬变电磁概率反演及不确定性分析[D]. 济南: 山东大学, 2021. |
ZHANG N Y. Study of transient electromagnetic probabilistic inversion and uncertainty evaluation based on Bayesian probability framework[D]. Jinan: Shandong University, 2021 (in Chinese). | |
59 | EDELING W N, SCHMELZER M, DWIGHT R P, et al. Bayesian predictions of reynolds-averaged navier-stokes uncertainties using maximum a posteriori estimates[J]. AIAA Journal, 2018, 56(5): 2018-2029. |
60 | HART R A, CLARK D H. Does size matter? Exploring the small sample properties of maximum likelihood estimation[C]∥ The Annual Meeting of the Midwest Political Science Association, 1999. |
61 | PSUTKA J V, PSUTKA J. Sample size for maximum likelihood estimates of Gaussian model[C]∥ 16 th International Conference Computer Analysis of Images and Patterns. Cham: Springer International Publishing, 2015: 462-469. |
62 | MASSEY F J Jr. The kolmogorov-smirnov test for goodness of fit[J]. Journal of the American Statistical Association, 1951, 46(253): 68-78. |
63 | ANDERSON T W, DARLING D A. A test of goodness of fit[J]. Journal of the American Statistical Association, 1954, 49(268): 765-769. |
64 | PEARSON K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably sup-posed to have arisen from random sampling [M]∥ KOTZ S, JOHNSON N L. Breakthroughs in Statistics. New York: Springer New York, 1992. |
65 | AKAIKE H. A Bayesian analysis of the minimum AIC procedure[J]. Annals of the Institute of Statistical Mathematics, 1978, 30(1): 9-14. |
66 | SUGIURA N. Further analysis of the data by Akaike’s information criterion and the finite corrections[J]. Communications in Statistics - Theory and Methods, 1978, 7(1): 13-26. |
67 | FINDLEY D F. Counterexamples to parsimony and BIC[J]. Annals of the Institute of Statistical Mathematics, 1991, 43(3): 505-514. |
68 | LIM W, JANG J, KIM S, et al. Reliability-based design optimization of an automotive structure using a variable uncertainty[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(10): 1314-1323. |
69 | KANG Y J, LIM O K, NOH Y. Sequential statistical modeling method for distribution type identification[J]. Structural and Multidisciplinary Optimization, 2016, 54(6): 1587-1607. |
70 | 陈健,张洋. 基于贝叶斯信息准则的瞬变电磁反演模型选择[C]∥ 2020年中国地球科学联合学术年会论文集, 2020: 389-392. |
CHEN J, ZHANG Y. Selection of transient electromagnetic inversion model based on Bayesian information criteri-on[C]∥ Proceedings of the 2020 China Earth Science Association Annual Conference,2020: 389-392 (in Chinese). | |
71 | KANG Y J, NOH Y. Comparison study of statistical modeling methods for identifying distribution types[C]∥ 11th World Congress on Structural and Multidisciplinary Optimisation, 2015. |
72 | SILVERMAN B W. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986. |
73 | CARUSO F, TSALLIS C. Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics[J]. Physical Review E, 2008, 78(2): 021102. |
74 | 黄乾坤, 吴娅辉. 最大熵原理及改进方法的研究现状[J]. 计测技术, 2022, 42(1): 9-17. |
HUANG Q K, WU Y H. Research status of the maximum entropy principle and improved methods[J]. Metrology & Measurement Technology, 2022, 42(1): 9-17 (in Chinese). | |
75 | 陈雷, 乔百杰, 敖春燕, 等. 基于叶端定时的转子叶片动应变重构不确定性量化[J]. 航空动力学报, 2022, 37(7): 1456-1468. |
CHEN L, QIAO B J, AO C Y, et al. Uncertainty quantification of rotor blade dynamic strain reconstruction based on blade tip timing[J]. Journal of Aerospace Power, 2022, 37(7): 1456-1468 (in Chinese). | |
76 | CHEN B Y, KOU Y, ZHAO D, et al. Maximum entropy distribution function and uncertainty evaluation criteria[J]. China Ocean Engineering, 2021, 35(2): 238-249. |
77 | 吕文. 最大熵原理与贝叶斯方法在测量数据处理中的应用[D]. 成都: 电子科技大学, 2006. |
LYU W. Application of maximum entropy principle and Bayesian method in measurement data processing[D].Chengdu: University of Electronic Science and Technology of China, 2006 (in Chinese). | |
78 | 李昊燃. 结构可靠性分析的改进最大熵方法[D]. 大连: 大连理工大学, 2015. |
LI H R. The improved maximum entropy method of structure reliability analysis[D]. Dalian: Dalian University of Technology, 2015 (in Chinese). | |
79 | 刘钰, 韩峰, 王玉恒, 等. 一种基于密度核估计的最大熵方法[J]. 工程数学学报, 2011, 28(3): 285-292. |
LIU Y, HAN F, WANG Y H, et al. A new maximum entropy method based on kernel density estimate[J]. Chinese Journal of Engineering Mathematics, 2011, 28(3): 285-292 (in Chinese). | |
80 | 王鑫, 李慧, 范新桥, 等. 基于VMD-GRU和非参数核密度估计的风电功率概率区间预测[J]. 北京信息科技大学学报(自然科学版), 2021, 36(4): 59-65. |
WANG X, LI H, FAN X Q, et al. Probabilistic interval prediction of wind power based on VMD-GRU and nonparametric kernel density estimation[J]. Journal of Beijing Information Science & Technology University, 2021, 36(4): 59-65 (in Chinese). | |
81 | JONES M C, MARRON J S, SHEATHER S J. A brief survey of bandwidth selection for density estimation[J]. Journal of the American Statistical Association, 1996, 91(433): 401-407. |
82 | 单德山, 董俊, 李乔, 等. 基于非参数核密度估计的桥梁结构地震易损性分析[J]. 中国公路学报, 2017, 30(12): 71-80. |
SHAN D S, DONG J, LI Q, et al. Seismic vulnerability analysis of bridge structures based on nonparametric kernel density estimation[J]. China Journal of Highway and Transport, 2017, 30(12): 71-80 (in Chinese). | |
83 | KANG Y J, NOH Y, LIM O K. Kernel density estimation with bounded data[J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 95-113. |
84 | 尹训福, 郝志峰, 杨晓伟. 快速核密度估计算法研究进展[J]. 计算机工程与应用, 2007, 43(31): 1-4. |
YIN X F, HAO Z F, YANG X W. Review of fast kernel density estimation algorithms[J]. Computer Engineering and Applications, 2007, 43(31): 1-4 (in Chinese). | |
85 | 缪鹏彬. 基于改进核密度估计和拉丁超立方抽样的电动汽车负荷模型[D]. 重庆: 重庆大学, 2016. |
MIAO P B. Research on electric vehicle load model based on improved kernel density estimation and Latin hyper cube sampling[D]. Chongqing: Chongqing University, 2016 (in Chinese). | |
86 | 赵铁军, 孙玲玲, 牛益国, 等. 基于改进非参数核密度估计的光伏出力概率分布建模方法[J]. 燕山大学学报, 2021, 45(5): 430-437, 448. |
ZHAO T J, SUN L L, NIU Y G, et al. Photovoltaic output modeling based on improved non-parametric kernel density estimation[J]. Journal of Yanshan University, 2021, 45(5): 430-437, 448 (in Chinese). | |
87 | 魏骁. 基于混合不确定性建模的船舶不确定性优化设计[D]. 武汉: 武汉理工大学, 2020. |
WEI X. Ship uncertainty-based design optimization based on mixed uncertainty modeling[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). | |
88 | 熊芬芬,王瑞利,吴晓军,等.不确定性量化方法及其应用[M].北京:科学出版社,2022 (in Chinese). |
XIONG F F, WANG R L, WU X J,et al. Method and application of uncertainty quantification[M].Beijing: Science Press,2022. | |
89 | LURY D A, FISHER R A. Statistical methods for research workers [J]. Botanical Gazette, 1929, 87(3): 229. |
90 | AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723. |
91 | MARSAGLIA G, TSANG W W, WANG J B. Evaluating Kolmogorov’s distribution[J]. Journal of Statistical Software, 2003, 8(18):1-4. |
92 | SANKARARAMAN S, MAHADEVAN S. Distribution type uncertainty due to sparse and imprecise data[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 182-198. |
93 | 张鹏, 刘晓健, 张树有, 等. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版), 2019, 53(3): 435-443. |
ZHANG P, LIU X J, ZHANG S Y, et al. Sparse hybrid uncertain variable optimization method and application[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(3): 435-443 (in Chinese). | |
94 | PENG X, LI J Q, JIANG S F. Unified uncertainty representation and quantification based on insufficient input data[J]. Structural and Multidisciplinary Optimization, 2017, 56(6): 1305-1317. |
95 | PENG X, LIU Z Y, XU X Q, et al. Nonparametric uncertainty representation method with different insufficient data from two sources[J]. Structural and Multidisciplinary Optimization, 2018, 58(5): 1947-1960. |
96 | PENG X A, WU T J, LI J Q, et al. Hybrid reliability analysis with uncertain statistical variables, sparse variables and interval variables[J]. Engineering Optimization, 2018, 50(8): 1347-1363. |
97 | ZAMAN K, DEY P R. Likelihood-based representation of epistemic uncertainty and its application in robustness-based design optimization[J]. Structural and Multidisciplinary Optimization, 2017, 56(4): 767-780. |
98 | DU X P, SUDJIANTO A, HUANG B Q. Reliability-based design with the mixture of random and interval variables[J]. Journal of Mechanical Design, 2005, 127(6): 1068-1076. |
99 | AGARWAL H, RENAUD J E, PRESTON E L, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization[J]. Reliability Engineering & System Safety, 2004, 85(1-3): 281-294. |
100 | SUDRET B, DER KIUREGHIAN A. Stochastic finite element methods and reliability: a state-of-the-art report [M]. Berkeley: University of California Berkeley, 2000. |
101 | XIU D B. Numerical methods for stochastic computations: a spectral method approach[M]. Princeton: Princeton University Press, 2010. |
102 | LOèVE M. Elementary probability theory[M]∥ Probability Theory I. New York: Springer New York, 1977: 1-52. |
103 | 赵超. 基于随机场理论的地层类型与岩土参数空间分布耦合概率建模方法研究[D]. 武汉: 中国地质大学, 2022. |
ZHAO C. Coupled characterization of stratigraphic and geo-properties uncertainties with random field theory[D]. Wuhan: China University of Geosciences, 2022 (in Chinese). | |
104 | 蒋水华. 水电工程边坡可靠度非侵入式随机分析方法[D]. 武汉: 武汉大学, 2014. |
JIANG S H. A non-intrusive stochastic method for slope reliability in hydroelectricity engineering[D]. Wuhan: Wuhan University, 2014 (in Chinese). | |
105 | 贾超, 王轮祥, 王者超, 等. 基于随机场理论的地下洞室涌水量预测[J]. 现代隧道技术, 2015, 52(5): 117-124. |
JIA C, WANG L X, WANG Z C, et al. Prediction of water inflows in underground caverns based on the random field theory[J]. Modern Tunnelling Technology, 2015, 52(5): 117-124 (in Chinese). | |
106 | GRAVANIS E, PANTELIDIS L, GRIFFITHS D V. An analytical solution in probabilistic rock slope stability assessment based on random fields[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 19-24. |
107 | 牛燚炜, 周小平, 钱七虎. 基于随机场的岩石边坡三维稳定性分析[J]. 土木建筑与环境工程, 2017, 39(3): 129-137. |
NIU Y W, ZHOU X P, QIAN Q H. Three-dimensional stability assessment of rock slopes based on random fields[J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(3): 129-137 (in Chinese). | |
108 | FENG X, LU Z X, YANG Z Y, et al. Analysis on the variances of material and structural properties based on random field theory[J]. Probabilistic Engineering Mechanics, 2011, 26(2): 222-230. |
109 | JIANG C, HAN X, LIU G R, et al. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008, 188(1): 1-13. |
110 | 姜潮. 基于区间的不确定性优化理论与算法[D]. 长沙: 湖南大学, 2008. |
JIANG C. Theories and algorithms of uncertain optimization based on interval[D]. Changsha: Hunan University, 2008 (in Chinese). | |
111 | 王增武. 金融经济领域中的不确定性研究综述[J]. 金融评论, 2012, 4(2): 85-95, 126. |
WANG Z W. A survey of ambiguity in finance and economics[J]. Chinese Review of Financial Studies, 2012, 4(2): 85-95, 126 (in Chinese). | |
112 | KEATS A, YEE E, LIEN F S. Bayesian inference for source determination with applications to a complex urban environment[J]. Atmospheric Environment, 2007, 41(3): 465-479. |
113 | WONG S C, BARHORST A A. Parameter identification of nonlinear hybrid parameter multibody dynamic system with contacts using a polynomial interpolated Taylor series method[C]∥ Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach: ASME, 2008: 591-600. |
114 | 刘刚, 王秀茹, 李华, 等. 考虑风电不确定性的配电网区间潮流计算[J]. 电测与仪表, 2022, 59(2): 126-132. |
LIU G, WANG X R, LI H, et al. Interval power flow calculation for distribution networks considering the uncertainty of wind power[J]. Electrical Measurement & Instrumentation, 2022, 59(2): 126-132 (in Chinese). | |
115 | 方兰. 基于仿射算法的不确定性结构区间非概率可靠性分析[D]. 西安: 西安电子科技大学, 2014. |
FANG L. Interval non-probabilistic reliability analysis of uncertainty structure based on affine algorithm[D]. Xi’an: Xidian University, 2014 (in Chinese). | |
116 | 方圣恩, 张秋虎, 林友勤, 等. 不确定性参数识别的区间响应面模型修正方法[J]. 振动工程学报, 2015, 28(1): 73-81. |
FANG S E, ZHANG Q H, LIN Y Q,et al. Uncertain parameter identification using interval response surface model updating [J]. Journal of Vibration Engineering, 2015, 28(1): 73-81 (in Chinese). | |
117 | WILLIAMSON R C, DOWNS T. Probabilistic arithmetic. I. numerical methods for calculating convolutions and dependency bounds[J]. International Journal of Approximate Reasoning, 1990, 4(2): 89-158. |
118 | 许泽伟. 基于多项式混沌展开的不确定性模型修正方法研究[D]. 兰州: 兰州交通大学, 2021. |
XU Z W. Uncertainty finite element model updating method based on polynomial chaotic expansion[D]. Lanzhou: Lanzhou Jiaotong University, 2021 (in Chinese). | |
119 | FERSON S, KREINOVICH V, HAJAGOS J, et al. Experimental uncertainty estimation and statistics for data having interval uncertainty: SAND2007-0939 [R]. New York : Sandia National Laboratories, 2007. |
120 | 吴沐宸, 陈江涛, 夏侯唐凡, 等. 非参数化概率盒下随机与认知不确定性的分离式灵敏度分析[J]. 航空学报, 2023, 44(1): 226658. |
WU M C, CHEN J T, XIAHOU T F, et al. Separating sensitivity analysis of aleatory and epistemic uncertainties in non-parametric probability-box[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 226658 (in Chinese). | |
121 | ZHU W Q, CHEN N, LIU J, et al. A probability-box-based method for propagation of multiple types of epistemic uncertainties and its application on composite structural-acoustic system[J]. Mechanical Systems and Signal Processing, 2021, 149: 107184. |
122 | SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976. |
123 | 曹立雄. 基于证据理论的结构不确定性传播与反求方法研究[D]. 长沙: 湖南大学, 2019. |
CAO L X. Research on structural uncertainty propagation and inverse method based on evidence theory[D]. Changsha: Hunan University, 2019 (in Chinese). | |
124 | 傅仰耿, 巩晓婷, 张玺霖, 等. Dempster证据合成法则的通用实现方法[J]. 计算机科学, 2012, 39(12): 181-183, 219. |
FU Y G, GONG X T, ZHANG X L, et al. General algorithms for dempster’s combination rule of evidence[J]. Computer Science, 2012, 39(12): 181-183, 219 (in Chinese). | |
125 | YAGER R R. On the dempster-shafer framework and new combination rules[J]. Information Sciences, 1987, 41(2): 93-137. |
126 | INAGAKI T. Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory[J]. IEEE Transactions on Reliability, 1991, 40(2): 182-188. |
127 | 姜潮, 张哲, 韩旭, 等. 一种基于证据理论的结构可靠性分析方法[J]. 力学学报, 2013, 45(1): 103-115. |
JIANG C, ZHANG Z, HAN X, et al. An evidence-theory-based reliability analysis method for uncertain structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 103-115 (in Chinese). | |
128 | 范松, 姜潮, 张哲, 等. 一种基于证据理论的结构可靠性优化设计方法[J]. 中国科学: 技术科学, 2016, 46(7): 706-716. |
FAN S, JIANG C, ZHANG Z, et al. A reliability-based design optimization method for structures using evidence theory[J]. Scientia Sinica (Technologica), 2016, 46(7): 706-716 (in Chinese). | |
129 | 胡盛勇, 胡钧铭, 魏发远, 等. 考虑不确定性的稳健优化设计研究[J]. 机械与电子, 2013, 31(4): 3-6. |
HU S Y, HU J M, WEI F Y, et al. Study of robust optimal design considering uncertainty[J]. Machinery & Electronics, 2013, 31(4): 3-6 (in Chinese). | |
130 | FERSON S, KREINOVICH V, GINZBURG L, et al. Constructing probability boxes and Dempster-Shafer structures: SAND2002-4015[R]. New York : Sandia National Laboratories, 2002. |
131 | REGAN H M, FERSON S, BERLEANT D. Equivalence of methods for uncertainty propagation of real-valued random variables[J]. International Journal of Approximate Reasoning, 2004, 36(1): 1-30. |
132 | TONON F. Using random set theory to propagate epistemic uncertainty through a mechanical system[J]. Reliability Engineering & System Safety, 2004, 85(1-3): 169-181. |
133 | ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353. |
134 | INUIGUCHI M, RAM??K J. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem[J]. Fuzzy Sets and Systems, 2000, 111(1): 3-28. |
135 | 周天毅. 基于模糊理论和神经网络的多传感器数据融合研究[D]. 南京: 南京信息工程大学, 2022. |
ZHOU T Y. Research on multi-sensor data fusion based on fuzzy theory and neural network[D]. Nanjing: Nanjing University of Information Science & Technology, 2022 (in Chinese). | |
136 | MEDASANI S, KIM J, KRISHNAPURAM R. An overview of membership function generation techniques for pattern recognition[J]. International Journal of Approximate Reasoning, 1998, 19(3-4): 391-417. |
137 | 徐静, 任立良, 刘晓帆, 等. 基于模糊集理论的降雨不确定性传播影响研究[J]. 水科学进展, 2009, 20(3): 422-427. |
XU J, REN L L, LIU X F, et al. Propagation effect of precipitation uncertainty on rainfall-runoff modeling based on fuzzy set theory[J]. Advances in Water Science, 2009, 20(3): 422-427 (in Chinese). | |
138 | MOHAMMADI M, NOOROLLAHI Y, MOHAMMADI-IVATLOO B. Fuzzy-based scheduling of wind integrated multi-energy systems under multiple uncertainties[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100602. |
139 | BEN-HAIM Y, ELISHAKOFF I. Convex models of uncertainty in applied mechanics[M]. Amsterdam: Elsevier Science Publisher, 1990:13-17. |
140 | JIANG C, ZHANG Q F, HAN X, et al. Multidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis[J]. International Journal for Numerical Methods in Engineering, 2015, 103(1): 31-59. |
141 | ZHENG J, LUO Z, JIANG C, et al. Non-probabilistic reliability-based topology optimization with multidimensional parallelepiped convex model[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2205-2221. |
142 | CAO L X, LIU J, XIE L, et al. Non-probabilistic polygonal convex set model for structural uncertainty quantification[J]. Applied Mathematical Modelling, 2021, 89: 504-518. |
143 | MENG Z, HU H, ZHOU H L. Super parametric convex model and its application for non-probabilistic reliability-based design optimization[J]. Applied Mathematical Modelling, 2018, 55: 354-370. |
144 | 李龙. 基于椭球凸模型的可靠性灵敏度研究[D]. 西安: 西安科技大学, 2016. |
LI L. Non-probabilistic reliability sensitivity based on ellipsoidal convex model[D]. Xi’an: Xi’an University of Science and Technology, 2016 (in Chinese). | |
145 | JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33-36): 2528-2546. |
146 | 白嵩. 基于概率模型与椭球凸模型的有界参数不确定性结构优化[D]. 大连: 大连理工大学, 2022. |
BAI S. Structural optimization considering bounded uncertainties based on probabilistic model and ellipsoid convex model[D]. Dalian: Dalian University of Technology, 2022 (in Chinese). | |
147 | 邱志平, 胡永明. 椭球凸模型非概率可靠性度量和区间安全系数的关系[J]. 计算力学学报, 2016, 33(4): 522-527. |
QIU Z P, HU Y M. The relations of non-probabilistic reliability measures based on ellipsoidal convex model and interval safety factors[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 522-527 (in Chinese). | |
148 | ZHU L P, ELISHAKOFF I, STARNES J H. Derivation of multi-dimensional ellipsoidal convex model for experimental data[J]. Mathematical and Computer Modelling, 1996, 24(2): 103-114. |
149 | BAI Y C, HAN X, JIANG C, et al. A response-surface-based structural reliability analysis method by using non-probability convex model[J]. Applied Mathematical Modelling, 2014, 38(15-16): 3834-3847. |
150 | KANG Z, ZHANG W B. Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 461-489. |
151 | QIU Z P. Comparison of static response of structures using convex models and interval analysis method[J]. International Journal for Numerical Methods in Engineering, 2003, 56(12): 1735-1753. |
152 | QIU Z P, WANG X J. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach[J]. International Journal of Solids and Structures, 2003, 40(20): 5423-5439. |
153 | 邱志平. 非概率集合理论凸方法及其应用[M]. 北京: 国防工业出版社, 2005. |
QIU Z P. Convex method based on non-probabilistic set-theory and its application[M]. Beijing: National Defense Industry Press, 2005 (in Chinese). | |
154 | LIU B D. Uncertainty theory[M]. 2nd ed. Berlin: Springer-Verlag, 2007. |
155 | 刘宝碇, 彭锦. 不确定理论教程[M]. 北京: 清华大学出版社, 2005. |
LIU B D, PENG J. A course in uncertainty theory[M]. Beijing: Tsinghua University Press, 2005 (in Chinese). | |
156 | 彭锦, 刘宝碇. 不确定理论及其公理化体系[J]. 黄冈师范学院学报, 2004, 24(3): 1-9. |
PENG J, LIU B D. Uncertainty theory and its axiomatic foundations[J]. Journal of Huanggang Normal University, 2004, 24(3): 1-9 (in Chinese). | |
157 | LIO W, LIU B D. Uncertain maximum likelihood estimation with application to uncertain regression analysis[J]. Soft Computing, 2020, 24(13): 9351-9360. |
158 | 杨晗, 王浩伟, 李清荣, 等. 基于确信可靠性理论的蠕变寿命模型应用研究[J]. 系统工程与电子技术, 2022, 44(3): 1044-1051. |
YANG H, WANG H W, LI Q R, et al. Application research of creep life model based on belief reliability theory[J]. Systems Engineering and Electronics, 2022, 44(3): 1044-1051 (in Chinese). | |
159 | 王瑛, 孙贇, 孟祥飞, 等. 基于机会理论的复杂装备系统风险传递GERT研究[J]. 系统工程与电子技术, 2018, 40(12): 2707-2713. |
WANG Y, SUN Y, MENG X F, et al. Research on risk transfer GERT of complex equipment systems based on opportunity theory[J]. Systems Engineering and Electronics, 2018, 40(12): 2707-2713 (in Chinese). | |
160 | CHEN X, QIU Z P. A novel uncertainty analysis method for composite structures with mixed uncertainties including random and interval variables[J]. Composite Structures, 2018, 184: 400-410. |
161 | 屈小章, 余江鸿, 姚齐水, 等. 基于随机-区间混合不确定性的风机性能可靠性分析[J]. 中国科学: 技术科学, 2020, 50(3): 299-311. |
QU X Z, YU J H, YAO Q S, et al. Random-interval hybrid reliability analysis for fan performance in the presence of epistemic uncertainty[J]. Scientia Sinica (Technologica), 2020, 50(3): 299-311 (in Chinese). | |
162 | 梁霄, 王瑞利. 混合不确定度量化方法及其在计算流体动力学迎风格式中的应用[J]. 爆炸与冲击, 2016, 36(4): 509-515. |
LIANG X, WANG R L. Mixed uncertainty quantification and its application in upwind scheme for computational fluid dynamics(CFD)[J]. Explosion and Shock Waves, 2016, 36(4): 509-515 (in Chinese). | |
163 | ZHANG E, ANTONI J, FEISSEL P. Bayesian force reconstruction with an uncertain model[J]. Journal of Sound and Vibration, 2012, 331(4): 798-814. |
164 | 胡益峰. 考虑模型参量不确定性的计算反求方法研究[D]. 长沙: 湖南大学, 2017. |
HU Y F. Computational inverse method research for inverse problem considering uncertain model parameters[D]. Changsha: Hunan University, 2017 (in Chinese). | |
165 | WALTER J, LAWRENCE W, ELDER D, et al. Development of an uncertainty model for the national transonic facility (invited)[C]∥ 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2010: 4925. |
/
〈 |
|
〉 |