ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Shock wave/boundary layer interaction control method based on oscillating vortex generator
Received date: 2023-02-01
Revised date: 2023-02-21
Accepted date: 2023-04-13
Online published: 2023-04-21
Supported by
Postgraduate Research & Practice Innovatio Program of NUAA(xcxjh20220203);Supported by the Open Fund from Laboratory of Aerodynamics in Multiple Flow Regimes(LLYSYS-KFJJ-ZD-2022-02);National Natural Science Foundation of China(12025202);Young Scientific and Technological Talents Project of Jiangsu Association for Science and Technology(TJ-2021-052)
Shock Wave/Boundary Layer Interaction (SWBLI) is a common flow phenomenon in high speed inlet. SWBLI-induced significant boundary layer separation often leads to a serious decline in inlet aerodynamic performance. Therefore, a shock wave/boundary layer interaction control method based on a novel oscillating vortex generator array is proposed in this paper. The flow field of oscillating vortex generator array is studied with a simulation method based on the dynamic grid technology. The effectiveness of the method is tested and the influence law of related parameters studied. The results show that the oscillating vortex generator can induce the vortex system structure with variable oscillation intensity in the supersonic boundary layer, enhancing the mixing effect of the flow and high-speed mainstream in the boundary layer. Meanwhile, the unique “extrusion” and “suction” characteristics of the vortex generator in the oscillation process continue to charge the airflow, and the velocity distribution in the boundary layer is significantly increased. In terms of SWBLI control, with the increase of oscillation frequency of the vortex generator, its charging effect on the low-speed airflow in the boundary layer is enhanced, and its control effect on the SWBLI flow field is more obvious, and the shape factor can be reduced by up to 28%. When the shock wave incident is at 34hv downstream of the vortex generator (where hv is the maximum height of the vortex generator), the control effect of the oscillating vortex generator array is the best, and the length of the separation zone can be reduced by 25% compared with that without the vortex generator control. A height of 30 mm (z=30 mm) is intercepted at x=270 mm downstream of the vortex generator and set as the monitoring surface. Compared with the fixed geometry vortex generator, the total pressure recovery coefficient and Mach number are increased by 5% and 2.4%, respectively.
Mengge WANG , Xiaoming HE , Juanjuan WANG , Yue ZHANG , Kun WANG , Huijun TAN , Liugang LI . Shock wave/boundary layer interaction control method based on oscillating vortex generator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(20) : 128503 -128503 . DOI: 10.7527/S1000-6893.2023.28503
1 | VAN WIE D M. Scramjet inlets: AIAA-2001-0511[R]. Reston: AIAA, 2001. |
2 | SEDDON J, GOLDSMITH E L. Intake aerodynamics[M]. New York: American Institute of Aeronautics and Astronautics, 1985. |
3 | ANDERSON B H. Design of supersonic inlets by a computer program incorporating the method of characteristics[R]. Washington, D.C.: NASA, 1969. |
4 | HOLDEN M. Historical review of experimental studies and prediction methods to describe laminar and turbulent shock wave/boundary layer interactions in hypersonic flows: AIAA-2006-0494[R]. Reston: AIAA, 2006. |
5 | 潘宏禄, 李俊红, 沈清. 超燃进气道激波/湍流边界层干扰[J]. 推进技术, 2013, 34(9): 1172-1178. |
PAN H L, LI J H, SHEN Q. Studies of turbulence/shock interaction in a scramjet inlet[J]. Journal of Propulsion Technology, 2013, 34(9): 1172-1178 (in Chinese). | |
6 | 袁化成, 梁德旺. 抽吸对高超声速进气道起动能力的影响[J]. 推进技术, 2006, 27(6): 525-528. |
YUAN H C, LIANG D W. Effect of suction on starting of hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(6): 525-528 (in Chinese). | |
7 | 严红明, 钟兢军, 韩吉昂, 等. 超声速进气道喉部附面层抽吸[J]. 推进技术, 2009, 30(2): 175-181. |
YAN H M, ZHONG J J, HAN J A, et al. Research on boundary-layer suction in the throat of supersonic inlet[J]. Journal of Propulsion Technology, 2009, 30(2): 175-181 (in Chinese). | |
8 | 赵健, 范晓樯, 王翼, 等. 超声速边界层抽吸孔隙内流场结构分类[J]. 推进技术, 2017, 38(11): 2463-2470. |
ZHAO J, FAN X Q, WANG Y, et al. Classification of flow field in supersonic boundary layer bleed slot[J]. Journal of Propulsion Technology, 2017, 38(11): 2463-2470 (in Chinese). | |
9 | 时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报, 2022, 43(1): 625929. |
SHI X T, LYU M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625929 (in Chinese). | |
10 | 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. |
WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371 (in Chinese). | |
11 | BLINDE P L, HUMBLE R A, VAN OUDHEUSDEN B W, et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves, 2009, 19(6): 507-520. |
12 | ANDERSON B, TINAPPLE J, SURBER L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation: AIAA-2006-3197[R]. Reston: AIAA, 2006. |
13 | ZHANG Y, TAN H J, DU M C, et al. Control of shock/boundary-layer interaction for hypersonic inlets by highly swept microramps[J]. Journal of Propulsion and Power, 2015, 31(1): 133-143. |
14 | BABINSKY H, LI Y, PITT FORD C W. Microramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal, 2009, 47(3): 668-675. |
15 | WANG B, LIU W D, ZHAO Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control[J]. Physics of Fluids, 2012, 24(5): 055110. |
16 | GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size[J]. Physics of Fluids, 2014, 26(6): 066101. |
17 | GIEPMAN R, SRIVASTAVA A, SCHRIJER F, et al. The effects of Mach and Reynolds number on the flow mixing properties of micro-ramp vortex generators in a supersonic boundary layer: AIAA-2015-2779[R]. Reston: AIAA, 2015. |
18 | LAMBOURNE N C, LANDON R H, ZWAAN R J. Compendium of unsteady aerodynamic measurements[R]. Washington, D.C.: NACA, 1982. |
19 | 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431, 478. |
LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431, 478 (in Chinese). | |
20 | SAJEEV S, PAL S S J, GHOSH S, et al. Effectiveness of micro-vortex generators in tandem in high-speed flows: AIAA-2020-2961[R]. Reston: AIAA, 2020. |
21 | PANARAS A G, LU F K. Micro-vortex generators for shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 74: 16-47. |
/
〈 |
|
〉 |