ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Flow control mechanism of diffuser cascade with wavy leading⁃edge based on causal network analysis
Received date: 2022-11-28
Revised date: 2022-12-23
Accepted date: 2023-03-13
Online published: 2023-04-14
Supported by
National Natural Science Foundation of China(52076179)
Separation and vortex motion are key factors limiting the performance improvement of compressors, while the wavy leading-edge can effectively expand the working range of the compressor. This study implements the wavy leading-edge shape on the diffuser cascade, and uses a multi-objective optimization algorithm to construct a wavy leading-edge that significantly reduces the stall point loss at the expense of minimum design point performance. A data mining method, causal network analysis, is used to investigate the flow mechanism of the internal flow field of the diffuser cascade with variation in the wavy leading-edge control parameters. The optimization results show that the strength of the leading-edge vortex pairs increases as the amplitude-wave ratio decreases, and that the stall point loss can be significantly reduced at the expense of minimum design point performance with the amplitude-wave ratio range within 0.05⁃0.15. The causal network model and flow field analysis verify that, from the vortex motion perspective, the wavy leading-edge generates leading-edge vortex pairs, and the development of the leading-edge vortex pairs weakens that of the channel vortex and trailing-edge vortex flow through different ways; from the separation perspective, the wavy leading-edge weakens the loss caused by the corner region separation by changing the leading-edge airflow inhomogeneity and secondary flow energy and improving the low-energy fluid blockage.
Jiezhong DONG , Wuli CHU , Haoguang ZHANG , Bo LUO , Song YAN . Flow control mechanism of diffuser cascade with wavy leading⁃edge based on causal network analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 128336 -128336 . DOI: 10.7527/S1000-6893.2023.28336
1 | 张涵信,分离流与旋涡运动的结构分析[M]. 北京:国防工业出版社, 2002. |
ZHANG H X. Structural analysis of separating flow and vortex motion[M]. Beijing: National Defense Industry Press, 2002 (in Chinese). | |
2 | ZHAO X H, LI Y H, WU Y, et al. Numerical investigation of flow separation control on a highly loaded compressor cascade by plasma aerodynamic actuation[J]. Chinese Journal of Aeronautics, 2012, 25(3): 349-360. |
3 | TAYLOR J V, MILLER R J. Competing three-dimensional mechanisms in compressor flows[J]. Journal of Turbomachinery, 2017, 139(2): 021009. |
4 | GBADEBO S A, CUMPSTY N A, HYNES T P. Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2): 331-339. |
5 | LEI V M, SPAKOVSZKY Z S, GREITZER E M. A criterion for axial compressor hub-corner stall[J]. Journal of Turbomachinery, 2008, 130(3): 031006. |
6 | REIF W E. Morphogenesis and function of the squamation in sharks[J]. Neues Jahrbuch Für Geologie Und Pal?ontologie-Abhandlungen, 1982, 164(1-2): 172-183. |
7 | CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255: 503-539. |
8 | LI F, ZHAO G, LIU W X. Research on drag reduction performance of turbulent boundary layer on bionic jet surface[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017, 231(1): 258-270. |
9 | FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1): 51-60. |
10 | FISH F E, HOWLE L E, MURRAY M M. Hydrodynamic flow control in marine mammals[J]. Integrative and Comparative Biology, 2008, 48(6): 788-800. |
11 | FISH F E, LAUDER G V. Passive and active flow control by swimming fishes and mammals[J]. Annual Review of Fluid Mechanics, 2006, 38: 193-224. |
12 | MIKLOSOVIC D S, MURRAY M M, HOWLE L E, et al. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers[J]. Physics of Fluids, 2004, 16(5): L39-L42. |
13 | WATTS P, FISH F E. The influence of passive, leading edge tubercles on wing performance[C]∥ Proceedings of the Twelfth International Symposium on Unmanned Untethered Submersible Technology. 2001. |
14 | ZHAO M, ZHANG M M, XU J Z. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances[J]. Engineering Applications of Computational Fluid Mechanics, 2017, 11(1): 193-209. |
15 | CARREIRA PEDRO H, KOBAYASHI M. Numerical study of stall delay on humpback whale flippers[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
16 | HANSEN K L, KELSO R M, DALLY B B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1): 185-194. |
17 | ZHANG M M, WANG G F, XU J Z. Experimental study of flow separation control on a low-Re airfoil using leading-edge protuberance method[J]. Experiments in Fluids, 2014, 55(4): 1710. |
18 | ROSTAMZADEH N, HANSEN K L, KELSO R M, et al. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification[J]. Physics of Fluids, 2014, 26(10): 107101. |
19 | COLPITTS R R, PEREZ R E, JANSEN P W. Effect of leading-edge tubercles on rotor blades[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
20 | VAN NIEROP E A, ALBEN S, BRENNER M P. How bumps on whale flippers delay stall: An aerodynamic model[J]. Physical Review Letters, 2008, 100(5): 054502. |
21 | STEIN B, MURRAY M M. Stall mechanism analysis of humpback whale flipper models[C]∥ Proceedings of Unmanned Untethered Submersible Technology (UUST). 2005. |
22 | KEERTHI M C, RAJESHWARAN M S, KUSHARI A, et al. Effect of leading-edge tubercles on compressor cascade performance[J]. AIAA Journal, 2016, 54(3): 912-923. |
23 | JOHARI H, HENOCH C, CUSTODIO D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11): 2634-2642. |
24 | SUDHAKAR S, KARTHIKEYAN N, SURIYANARA YANAN P. Experimental studies on the effect of leading-edge tubercles on laminar separation bubble[J]. AIAA Journal, 2019, 57(12): 5197-5207. |
25 | FAVIER J, PINELLI A, PIOMELLI U. Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers[J]. Comptes Rendus Mécanique, 2012, 340(1-2): 107-114. |
26 | PEARL J, MACKENZIE D. The book of why: The new science of cause and effect[M]. New York: Basic Books, 2018. |
27 | ZHANG Y F, MAHALLATI A, BENNER M. Experimental and numerical investigation of corner stall in a highly-loaded compressor cascade[C]∥ Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014. |
28 | 张燕峰.高载荷压气机端壁流动及其控制策略研究[D]. 西安: 西北工业大学, 2010. |
ZHANG Y F. Investigation of endwall flow behaviour and its control strategies in highly-loaded compressor[D]. Xi’an: Northwestern Polytechnical University, 2010 (in Chinese). | |
29 | HAN J W, KAMBER M. Data mining: Concepts and techniques[M]. 2nd ed. Amsterdam: Elsevier, 2006. |
30 | NEUBERG L G. Causality: Models, reasoning, and inference, by Judea Pearl, Cambridge University Press, 2000[J]. Econometric Theory, 2003, 19(4): 675-685. |
31 | CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2003, 3(3): 507-554. |
32 | SUDER K L. Blockage development in a transonic, axial compressor rotor[J]. Journal of Turbomachinery, 1998, 120(3): 465-476. |
33 | 刘宝杰, 张志博, 于贤君. 轴流压气机转子叶尖泄漏堵塞特性的试验研究[J]. 航空学报, 2013, 34(12): 2682-2691. |
LIU B J, ZHANG Z B, YU X J. Experimental investigation on characteristics of tip leakage blockage in an axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2682-2691 (in Chinese). | |
34 | 田思濛, 吴云, 张海灯, 等. 基于能量耗散率的低速扩压叶栅损失研究[J]. 航空学报, 2015, 36(10): 3249-3262. |
TIAN S M, WU Y, ZHANG H D, et al. Energy loss in a low-speed compressor cascade with dissipation function[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3249-3262 (in Chinese). | |
35 | LI X J, CHU W L, WU Y H, et al. Effective end wall profiling rules for a highly loaded compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(6): 535-553. |
36 | KANG S, HIRSCH C. Three dimensional flow in a linear compressor cascade at design conditions[C]∥ Proceedings of ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. New York: ASME, 1991. |
37 | MüLLER R, SAUER H, VOGELER K, et al. Influencing the secondary losses in compressor cascades by a leading edge bulb modification at the endwall[C]∥ Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: ASME, 2002. |
38 | HERGT A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery, 2013, 135(2): 021026. |
39 | DING J, CHEN S W, XU H, et al. Control of flow separations in compressor cascade by boundary layer suction holes in suction surface[C]∥ Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013. |
40 | LI Z Y, DU J, JEMCOV A, et al. A study of loss mechanism in a linear compressor cascade at the corner stall condition[C]∥ Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. |
41 | 郑覃. 扩压叶栅前缘结状凸起流动机理研究[D]. 上海: 上海交通大学, 2019. |
ZHENG T. Investigation of flow mechanisms for leading edge tubercles in compressor cascades[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). |
/
〈 |
|
〉 |