Reviews

Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation

  • Xiangwei ZHU ,
  • Dan SHEN ,
  • Kai XIAO ,
  • Yuexin MA ,
  • Xiang LIAO ,
  • Fuqiang GU ,
  • Fangwen YU ,
  • Kefu GAO ,
  • Jingnan LIU
Expand
  • 1.School of Electronics and Communication Engineering,Sun Yat?sen University,Shenzhen 518107,China
    2.School of System Science and Engineering,Sun Yat?sen University,Guangzhou 510006,China
    3.Institute of Geospatial Information,PLA Strategic Support Force Information Engineering University,Zhengzhou 450001,China
    4.College of Medicine,Chongqing University,Chongqing 400030,China
    5.School of Computer Science,Chongqing University,Chongqing 400044,China
    6.Department of Precision Instruments,Tsinghua University,Beijing 100084,China
    7.Research Center of Satellite Navigation and Positioning Technology,Wuhan University,Wuhan 430079,China

Received date: 2023-02-17

  Revised date: 2023-03-20

  Accepted date: 2023-03-31

  Online published: 2023-04-11

Supported by

National Natural Science Foundation of China(61973328);Ministry of Education-China Mobile Scientific Research Fund(MCM2020-J-1);Shenzhen Science and Technology Program(GXWD20201231165807008)

Abstract

The rapid development of brain and neuroscience in recent decades has initially revealed the neural mechanism of animal navigation. Drawing on the brain neural structures and information processing mechanisms, the study of brain-inspired intelligent navigation systems provides new inspiration for low-power, highly robust autonomous intelligent navigation in complex environments. Based on a detailed review of the neural mechanisms of animal spatial navigation, this paper then outlines and discusses current intelligent algorithms for robotic bionic brain-inspired navigation, which can be categorized into three types according to the three types of neural networks used to process navigation information for intelligent navigation: attractor neural networks, deep reinforcement learning, and spiking neural networks. Then, the ways for implementing brain-inspired navigation, including bionic intelligent sensors and neuromorphic processor platforms, are sorted out. Finally, the development trend of brain-inspired navigation is discussed, including further exploration of the brain neural mechanism of navigation in the biological world and its information processing process with low energy consumption and high robustness mechanism, subcategorization of the conceptual connotation of brain-inspired navigation, and the ways to improve the evaluation index and the unified implementation framework.

Cite this article

Xiangwei ZHU , Dan SHEN , Kai XIAO , Yuexin MA , Xiang LIAO , Fuqiang GU , Fangwen YU , Kefu GAO , Jingnan LIU . Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 28569 -028569 . DOI: 10.7527/S1000-6893.2023.28569

References

1 MOURITSEN H. Long-distance navigation and magnetoreception in migratory animals[J]. Nature2018558(7708): 50-59.
2 曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报201639(1): 212-222.
  ZENG Y, LIU C L, TAN T N. Retrospect and out-look of brain-inspired intelligence research[J]. Chinese Journal of Computers201639(1): 212-222 (in Chinese).
3 徐波, 刘成林, 曾毅. 类脑智能研究现状与发展思考[J]. 中国科学院院刊201631(7): 793-802.
  XU B, LIU C L, ZENG Y. Research status and de-velopments of brain-inspired intelligence[J]. Bulletin of Chinese Academy of Sciences201631(7): 793-802 (in Chinese).
4 余芳文. 面向三维环境的类脑同步定位与制图系统[D]. 武汉: 中国地质大学, 2020: 15-53.
  YU F W. Brain inspired SLAM system for 3D envi-ronments[D]. Wuhan: China University of Geosci-ences, 2020: 15-53 (in Chinese).
5 杨闯, 刘建业, 熊智, 等. 由感知到动作决策一体化的类脑导航技术研究现状与未来发展[J]. 航空学报202041(1): 023280.
  YANG C, LIU J Y, XIONG Z, et al. Brain-inspired navigation technology integrating perception and action decision: A review and outlook[J]. Acta Aeronautica et Astronautica Sinica202041(1): 023280 (in Chinese).
6 O’KEEFE J, DOSTROVSKY J. The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research197134(1): 171-175.
7 HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature2005436(7052): 801-806.
8 TAUBE J S, MULLER R U, RANCK J B JR. Head-direction cells recorded from the postsubiculum in freely moving rats. I[J] The Journal of Neuroscience: the Official Journal of the Society for Neuroscience199010(2): 420-435.
9 ROWLAND D C, ROUDI Y, MOSER M B, et al. Ten years of grid cells [J]. Annual Review of Neuroscience201639(1): 19-40.
10 MOSER E I, ROUDI Y, WITTER M P, et al. Grid cells and cortical representation[J]. Nature Reviews Neuroscience201415(7): 466-481.
11 TUKKER J J, BEED P, BRECHT M, et al. Microcircuits for spatial coding in the medial entorhinal cortex[J]. Physiological Reviews2022102(2): 653-688.
12 CAPPAERT N L M, VAN STRIEN N M, WITTER M P. Chapter 20-hippocampal formation[M]∥ The Rat Nervous System (Fourth Edition). Amsterdam: Elsevier, 2015: 511-573.
13 KROPFF E, CARMICHAEL J E, MOSER M B, et al. Speed cells in the medial entorhinal cortex[J]. Nature2015523(7561): 419-424.
14 MACDONALD C J, LEPAGE K Q, EDEN U T, et al. Hippocampal “time cells” bridge the gap in memory for discontiguous events[J]. Neuron201171(4): 737-749.
15 SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhi-nal cortex[J]. Science2008322(5909): 1865-1868.
16 MOSER M B, ROWLAND D C, MOSER E I. Place cells, grid cells, and memory[J]. Cold Spring Harbor Perspectives in Biology20157(2): a021808.
17 HORI E, NISHIO Y, KAZUI K, et al. Place-related neural responses in the monkey hippocampal formation in a virtual space[J]. Hippocampus200515(8): 991-996.
18 EKSTROM A D, KAHANA M J, CAPLAN J B, et al. Cellular networks underlying human spatial navigation[J]. Nature2003425(6954): 184-188.
19 YARTSEV M M, ULANOVSKY N. Representation of three-dimensional space in the hippocampus of flying bats[J]. Science2013340(6130): 367-372.
20 WOHLGEMUTH M J, YU C, MOSS C F. 3D hippocampal place field dynamics in free-flying echolocating bats[J]. Frontiers in Cellular Neuroscience201812:27.
21 GRIEVES R M, JEDIDI-AYOUB S, MISHCHANCHUK K, et al. The place-cell representation of volumetric space in rats[J]. Nature Communications202011(1): 789.
22 KIM M, JEFFERY K J, MAGUIRE E A. Multivoxel pattern analysis reveals 3D place information in the human hippocampus[J]. The Journal of Neuroscience201737(16): 4270-4279.
23 FINKELSTEIN A, LAS L, ULANOVSKY N. 3-D maps and compasses in the brain[J]. Annual Review of Neuroscience201639(1): 171-196.
24 THOMPSON L T, BEST P J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats[J]. Brain Research1990509(2): 299-308.
25 MULLER R U, KUBIE J L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience19877(7): 1951-1968.
26 LEUTGEB S, LEUTGEB J K, BARNES C A, et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles[J]. Science2005309(5734): 619-623.
27 RANCK J B JR. Head direction cells in the deep layer of dorsal presubiculum in freely moving rats[J]. Society of Neuroscience Abstract198410: 599.
28 LONG X, YOUNG C K, ZHANG S J. Sharp tuning of head direction by somatosensory fast-spiking interneurons[DB/OL]. bioRxiv preprint2020.02.03.933143, 2020.
29 SARGOLINI F, FYHN M, HAFTING T, et al. Con-junctive representation of position, direction, and velocity in entorhinal cortex[J]. Science2006312(5774): 758-762.
30 TAUBE J S. The head direction signal: Origins and sensory-motor integration[J]. Annual Review of Neuroscience200730: 181-207.
31 LACHANCE P A, DUMONT J R, OZEL P, et al. Commutative properties of head direction cells dur-ing locomotion in 3D: Are all routes equal?[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience202040(15): 3035-3051.
32 FINKELSTEIN A, DERDIKMAN D, RUBIN A, et al. Three-dimensional head-direction coding in the bat brain[J]. Nature2015517(7533): 159-164.
33 FINKELSTEIN A, ULANOVSKY N, TSODYKS M, et al. Optimal dynamic coding by mixed-dimensionality neurons in the head-direction system of bats[J]. Nature Communications20189(1): 3590.
34 KIM M, MAGUIRE E A. Encoding of 3D head direction information in the human brain[J]. Hippocampus201929(7): 619-629.
35 APOSTEL A, ROSE J. Avian navigation: Head direction cells in the quail hippocampus[J]. Current Biology202131(12): R781-R783.
36 STACKMAN R W, TULLMAN M L, TAUBE J S. Maintenance of rat head direction cell firing during locomotion in the vertical plane[J]. Journal of Neu-rophysiology200083(1): 393-405.
37 YODER R M, TAUBE J S. The vestibular contribution to the head direction signal and navigation[J]. Frontiers in Integrative Neuroscience20148:32.
38 TAUBE J S, MULLER R U, RANCK J B JR. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience199010(2): 436-447.
39 RAUDIES F, BRANDON M P, CHAPMAN G W, et al. Head direction is coded more strongly than movement direction in a population of entorhinal neurons[J]. Brain Research20151621: 355-367.
40 BOCCARA C N, SARGOLINI F, THORESEN V H, et al. Grid cells in pre- and parasubiculum[J]. Nature Neuroscience201013(8): 987-994.
41 KILLIAN N J, JUTRAS M J, BUFFALO E A. A map of visual space in the primate entorhinal cortex[J]. Nature2012491(7426): 761-764.
42 YARTSEV M M, WITTER M P, ULANOVSKY N. Grid cells without theta oscillations in the entorhinal cortex of bats[J]. Nature2011479(7371): 103-107.
43 JACOBS J, WEIDEMANN C T, MILLER J F, et al. Direct recordings of grid-like neuronal activity in human spatial navigation[J]. Nature Neuroscience201316(9): 1188-1190.
44 GINOSAR G, ALJADEFF J, BURAK Y, et al. Locally ordered representation of 3D space in the entorhinal cortex[J]. Nature2021596(7872): 404-409.
45 KIM M, MAGUIRE E A. Can we study 3D grid codes non-invasively in the human brain? Methodological considerations and fMRI findings[J]. NeuroImage2019186: 667-678.
46 STEMMLER M, MATHIS A, HERZ A V M. Connecting multiple spatial scales to decode the population activity of grid cells[J]. Science Advances20151(11): e1500816.
47 STENSOLA H, STENSOLA T, SOLSTAD T, et al. The entorhinal grid map is discretized[J]. Nature2012492(7427): 72-78.
48 BARRY C, HAYMAN R, BURGESS N, et al. Experience-dependent rescaling of entorhinal grids[J]. Nature Neuroscience200710(6): 682-684.
49 HARDCASTLE K, GANGULI S, GIOCOMO L M. Environmental boundaries as an error correction mechanism for grid cells[J]. Neuron201586(3): 827-839.
50 SREENIVASAN S, FIETE I. Grid cells generate an analog error-correcting code for singularly precise neural computation[J]. Nature Neuroscience201114(10): 1330-1337.
51 TOWSE B W, BARRY C, BUSH D, et al. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013369(1635): 20130290.
52 O’KEEFE J, BURGESS N, DONNETT J G, et al. Place cells, navigational accuracy, and the human hippocampus[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1998353(1373): 1333-1340.
53 JEFFERY K J. The Neurobiology of Spatial Behaviour[M]. Oxford: Oxford University Press, 2003.
54 WILLS T J, BARRY C, CACUCCI F. The abrupt development of adult-like grid cell firing in the medial entorhinal cortex[J]. Frontiers in Neural Circuits20126: 21.
55 MALLORY C S, HARDCASTLE K, CAMPBELL M G, et al. Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals[J]. Nature Communications202112(1): 671.
56 SPALLA D, TREVES A, BOCCARA C N. Angular and linear speed cells in the parahippocampal circuits[J]. Nature Communications202213(1): 1907.
57 VARGHA-KHADEM F, GADIAN D G, WATKINS K E, et al. Differential effects of early hippocampal pathology on episodic and semantic memory[J]. Science1997277(5324): 376-380.
58 KRAUS B J, ROBINSON R J 2nd, WHITE J A, et al. Hippocampal time cells: Time versus path integration[J]. Neuron201378(6): 1090-1101.
59 SALZ D M, TIGANJ Z, KHASNABISH S, et al. Time cells in hippocampal area CA3[J]. Journal of Neuroscience201636(28): 7476-7484.
60 KRAUS B J, BRANDON M P, ROBINSON R J, et al. During running in place, grid cells integrate elapsed time and distance run[J]. Neuron201588(3): 578-589.
61 TSAO A, SUGAR J, LU L, et al. Integrating time from experience in the lateral entorhinal cortex[J]. Nature2018561(7721): 57-62.
62 AGHAJAN Z M, KREIMAN G, FRIED I. Minute-scale periodicity of neuronal firing in the human entorhinal cortex[M]. bioRxiv preprint2022.05.05.490703, 2022.
63 SHIMBO A, IZAWA E I, FUJISAWA S. Scalable representation of time in the hippocampus[J]. Science Advances20217(6): eabd7013.
64 O’KEEFE J, BURGESS N. Geometric determinants of the place fields of hippocampal neurons[J]. Nature1996381(6581): 425-428.
65 SAVELLI F, YOGANARASIMHA D, KNIERIM J J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex[J]. Hippocampus200818(12): 1270-1282.
66 LEVER C, BURTON S, JEEWAJEE A, et al. Boundary vector cells in the Subiculum of the Hippocampal Formation[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience200929(31): 9771-9777.
67 BJERKNES T L, MOSER E I, MOSER M B. Representation of geometric borders in the developing rat[J]. Neuron201482(1): 71-78.
68 HINMAN J R, CHAPMAN G W, HASSELMO M E. Neuronal representation of environmental boundaries in egocentric coordinates[J]. Nature Communications201910(1): 2772.
69 ALEXANDER A S, CARSTENSEN L C, HINMAN J R, et al. Egocentric boundary vector tuning of the retrosplenial cortex[J]. Science Advances20206(8): eaaz2322.
70 LIAN Y, WILLIAMS S, ALEXANDER A S, et al. Learning the vector coding of egocentric boundary cells from visual data[DB/OL]. bioRxiv preprint2022.01.28.478267, 2022.
71 H?YDAL ? A, SKYT?EN E R, ANDERSSON S O, et al. Object-vector coding in the medial entorhinal cortex[J]. Nature2019568(7752): 400-404.
72 WANG C, CHEN X J, KNIERIM J J. Egocentric and allocentric representations of space in the rodent brain[J]. Current Opinion in Neurobiology202060: 12-20.
73 ROLLS E T. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation[J]. Hippocampus202030(4): 332-353.
74 BALL D, HEATH S, WILES J, et al. OpenRatSLAM: An open source brain-based SLAM system[J]. Autonomous Robots201334(3): 149-176.
75 YU F W, SHANG J G, HU Y J, et al. NeuroSLAM: A brain-inspired SLAM system for 3D environments[J]. Biological Cybernetics2019113(5): 515-545.
76 WU S, WONG K Y M, FUNG C C A, et al Continuous attractor neural networks : Candidate of a canonical model for neural information representa-tion[J]. F1000Research20165(16): 209-226.
77 BANINO A, BARRY C, URIA B, et al. Vector-based navigation using grid-like representations in artificial agents[J]. Nature2018557(7705): 429-433.
78 PEI J, DENG L, SONG S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature2019572(7767): 106-111.
79 斯白露, 罗壹凡. 空间记忆与类脑导航研究进展[J]. 人工智能20207(1): 16-31.
  SI B L, LUO Y F. Research progress of spatial memory and brain-like navigation[J]. AI-View20207(1): 16-31 (in Chinese).
80 BURGESS N, BARRY C, O’KEEFE J. An oscillatory interference model of grid cell firing[J]. Hippocampus200717(9): 801-812.
81 BURGESS N. Grid cells and theta as oscillatory interference: Theory and predictions[J]. Hippocampus200818(12): 1157-1174.
82 BUSH D, BARRY C, MANSON D, et al. Using grid cells for navigation[J]. Neuron201587(3): 507-520.
83 FIETE I R, BURAK Y, BROOKINGS T. What grid cells convey about rat location[J]. Journal of Neuroscience200828(27): 6858-6871.
84 杨闯, 刘建业, 熊智, 等. 基于多尺度网格细胞模型的无人机类脑矢量导航方法[J]. 中国惯性技术学报202028(2): 179-185.
  YANG C, LIU J Y, XIONG Z, et al. Brain-inspired vector navigation method based on model of multi-scale grid cells[J]. Journal of Chinese Inertial Technology202028(2): 179-185 (in Chinese).
85 谷雨, 赵修斌, 代传金. 基于网格细胞模型的类脑大尺度空间矢量导航方法[J]. 控制理论与应用202138(12): 2094-2100.
  GU Y, ZHAO X B, DAI C J. Brain-like large-scale spatial vector navigation method based on grid cell model[J]. Control Theory & Applications202138(12): 2094-2100 (in Chinese).
86 CANTERO J L, ATIENZA M, STICKGOLD R, et al. Sleep-dependent θ oscillations in the human hippo-campus and neocortex[J]. The Journal of Neuroscience200323(34): 10897-10903.
87 ZILLI E A, YOSHIDA M, TAHVILDARI B, et al. Evaluation of the oscillatory interference model of grid cell firing through analysis and measured period variance of some biological oscillators[J]. PLoS Computational Biology20095(11): e1000573.
88 AMARI S I. Dynamics of pattern formation in lateral-inhibition type neural fields[J]. Biological Cybernetics197727(2): 77-87.
89 BEN-YISHAI R, BAR-OR R L, SOMPOLINSKY H. Theory of orientation tuning in visual cortex.[J]. Proceedings of the National Academy of Sciences of the United States of America199592(9): 3844-3848.
90 MI Y Y, KATKOV M, TSODYKS M. Synaptic correlates of working memory capacity[J]. Neuron201793(2): 323-330.
91 ZHANG K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory[J]. The Journal of Neuroscience199616(6): 2112-2126.
92 GOODRIDGE J P, TOURETZKY D S. Modeling attractor deformation in the rodent head-direction system[J]. Journal of Neurophysiology200083(6): 3402-3410.
93 BATTAGLIA F P, TREVES A. Attractor neural networks storing multiple space representations: A model for hippocampal place fields[J]. Physical Review E199858(6): 7738-7753.
94 TSODYKS M. Attractor neural network models of spatial maps in hippocampus[J]. Hippocampus19999(4): 481-489.
95 STRINGER S M, TRAPPENBERG T P, ROLLS E T, et al. Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells[J]. Network: Computation in Neural Systems200213(2): 217-242.
96 WITTER M P, MOSER E I. Spatial representation and the architecture of the entorhinal cortex[J]. Trends in Neurosciences200629(12): 671-678.
97 BURAK Y, FIETE I R. Accurate path integration in continuous attractor network models of grid cells[J]. PLoS Computational Biology20095(2): e1000291.
98 YOON K, BUICE M A, BARRY C, et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells[J]. Nature Neuroscience201316(8): 1077-1084.
99 MILFORD M J, WYETH G F, PRASSER D. RatSLAM: A hippocampal model for simultaneous localization and mapping[C]∥ IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. Piscataway: IEEE Press, 2004: 403-408.
100 MILFORD M J, PRASSER D, WYETH G. Experience mapping: Producing spatially continuous environment representations using RatSLAM[C]∥ Proceedings of the 2005 Australasian Confer-ence on Robotics and Automation, ACRA 20052005: 1-11.
101 MILFORD M J, WYETH G F. Mapping a suburb with a single camera using a bio-logically inspired SLAM system[J]. IEEE Transactions on Robotics200824(5): 1038-1053.
102 MILFORD M, WYETH G. Persistent navigation and mapping using a biologically inspired SLAM system[J]. The International Journal of Robotics Research201029(9): 1131-1153.
103 STECKEL J, PEREMANS H. BatSLAM: Simultaneous localization and mapping using biomimetic sonar[J]. PLoS One20138(1): e54076.
104 JACOBSON A, CHEN Z T, MILFORD M. Auton-omous multisensor calibration and closed-loop fusion for SLAM[J]. Journal of Field Robotics201532(1): 85-122.
105 ?ATAL O, JANSEN W, VERBELEN T, et al. LatentSLAM: Unsupervised multi-sensor representation learning for localization and mapping[C]∥ 2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 6739-6745.
106 YUAN M L, TIAN B, SHIM V A, et al. An entorhi-nal-hippocampal model for simultaneous cognitive map building[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
107 MULAS M, WANIEK N, CONRADT J. Hebbian plasticity realigns grid cell activity with external sensory cues in continuous attractor models[J]. Frontiers in Computational Neuroscience201610:13.
108 ZENG T P, SI B L. Cognitive mapping based on conjunctive representations of space and movement[J]. Frontiers in Neurorobotics201711: 61.
109 于乃功, 苑云鹤, 李倜, 等. 一种基于海马认知机理的仿生机器人认知地图构建方法[J]. 自动化学报201844(1): 52-73.
  YU N G, YUAN Y H, LI T, et al. A cognitive map building algorithm by means of cognitive mechanism of hippocampus[J]. Acta Automatica Sinica201844(1): 52-73 (in Chinese).
110 KRUPIC J, BURGESS N, O’KEEFE J. Neural representations of location composed of spatially periodic bands[J]. Science2012337(6096): 853-857.
111 SILVEIRA L, GUTH F, DREWS-JR P, et al. An open-source bio-inspired solution to underwater SLAM[J]. IFAC-PapersOnLine201548(2): 212-217.
112 YANG C, XIONG Z, LIU J Y, et al. A path integra-tion approach based on multiscale grid cells for large-scale navigation[J]. IEEE Transactions on Cognitive and Developmental Systems202214(3): 1009-1020.
113 MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature2015518(7540): 529-533.
114 SUN R, HSU L T, XUE D, et al. SUN R, HSU L T, XUE D B,et al. GPS signal reception classification using adaptive neuro-fuzzy inference system[J]. Journal of Navigation201972(3): 685-701.
115 PHAN Q H, TAN S L, MCLOUGHLIN I, et al. A unified framework for GPS code and carrier-phase multipath mitigation using support vector regression[J]. Advances in Artificial Neural Systems20132013: 1-14.
116 QUAN Y M, LAU L, ROBERTS G W, et al. Convo-lutional neural network based multipath detection method for static and kinematic GPS high precision positioning[J]. Remote Sensing201810(12): 2052.
117 SUN R, WANG G Y, ZHANG W Y, et al. A gradient boosting decision tree based GPS signal reception classification algorithm[J]. Applied Soft Computing202086: 105942.
118 SüNDERHAUF N, SHIRAZI S, DAYOUB F, et al. On the performance of ConvNet features for place recognition[C]∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 4297-4304.
119 DING L, FENG C. DeepMapping: Unsupervised map estimation from multiple point clouds[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 8642-8651.
120 LI J X, TANG H J, YAN R. A hybrid loop closure detection method based on brain-inspired models[J]. IEEE Transactions on Cognitive and Developmental Systems202214(4): 1532-1543.
121 杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报202150(08): 1006-1012.
  YANG Y X, YANG C, REN X. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica202150 (8): 1006-1012 (in Chinese).
122 刘经南, 罗亚荣, 郭迟, 等. PNT智能与智能PNT[J]. 测绘学报202251(6): 811-828.
  LIU J N, LUO Y R, GUO C, et al. PNT intelligence and intelligent PNT[J]. Acta Geodaetica et Carto-graphica Sinica202251(6): 811-828 (in Chinese).
123 ARLEO A, GERSTNER W. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity[J]. Biological Cybernetics200083(3): 287-299.
124 KANITSCHEIDER I, FIETE I. Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems[C]∥ Proceedings of the 31st International Conference on Neural Infor-mation Processing Systems. New York: ACM, 2017: 4532-4541.
125 CUEVA C J, WEI X X. Emergence of grid-like representations by training recurrent neural networks to perform spatial localization[DB/OL]. arXiv preprint1803.07770, 2018.
126 ROSENBAUM D, BESSE F, VIOLA F, et al. Learn-ing models for visual 3D localization with implicit mapping[DB/OL]. arXiv preprint1807.03149, 2018.
127 MAI G, JANOWICZ K, YAN B, et al. Multi-scale representation learning for spatial feature distributions using grid cells[DB/OL]. arXiv preprint2003.00824, 2020.
128 BEECHING E, DIBANGOYE J, SIMONIN O, et al. EgoMap: Projective mapping and structured egocentric memory for deep RL[C]∥ Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2021: 525-540.
129 郭迟, 罗宾汉, 李飞, 等. 类脑导航算法:综述与验证[J]. 武汉大学学报(信息科学版)202146(12): 1819-1831.
  GUO C, LUO B H, LI F, et al. Review and verifica-tion for brain-like navigation algorithm[J]. Geomatics and Information Science of Wuhan University202146(12): 1819-1831 (in Chinese).
130 F?RSTER A, GRAVES A, SCHMIDHUBER J. RNN-based learning of compact maps for efficient robot localization[C]∥ 15 th European Symposium on Artificial Neural Networks, 2007.
131 MOHAMMADI M, AL-FUQAHA A, GUIZANI M, et al. Semisupervised deep reinforcement learning in sup-port of IoT and smart city services[J]. IEEE Internet of Things Journal20185(2): 624-635.
132 LOQUERCIO A, KAUFMANN E, RANFTL R, et al. Learning high-speed flight in the wild[J]. Science Robotics20216(59): eabg5810.
133 MIROWSKI P, GRIMES M K, MALINOWSKI M, et al. Learning to navigate in cities without a map[DB/OL]. arXiv preprint1804.00168, 2018.
134 GU Y, CHEN Y Q, LIU J F, et al. Semi-supervised deep extreme learning machine for Wi-Fi based localization[J]. Neurocomputing2015166: 282-293.
135 ZHANG W, LIU K, ZHANG W D, et al. Deep Neural Networks for wireless localization in indoor and outdoor environments[J]. Neurocomputing2016194: 279-287.
136 LUO J H, GAO H B. Deep belief networks for fingerprinting indoor localization using ultrawideband technology[J]. International Journal of Distributed Sensor Networks201612(1): 5840916.
137 SAVELLI F, KNIERIM J J. AI mimics brain codes for navigation[J]. Nature2018557(7705): 313-314.
138 MAASS W. Networks of spiking neurons: The third generation of neural network models[J]. Neural Networks199710(9): 1659-1671.
139 TAVANAEI A, GHODRATI M, KHERADPISHEH S R, et al. Deep learning in spiking neural networks[J]. Neural Networks2019111: 47-63.
140 VANRULLEN R, GUYONNEAU R, THORPE S J. Spike times make sense[J]. Trends in Neurosciences200528(1): 1-4.
141 WOLFE J, HOUWELING A R, BRECHT M. Sparse and powerful cortical spikes[J]. Current Opinion in Neurobiology201020(3): 306-312.
142 ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature2019575(7784): 607-617.
143 ZHANG W R, LI P. Spike-train level backpropaga-tion for training deep recurrent spiking neural net-works[DB/OL]. arXiv preprint1908.06378, 2019.
144 DONG M, HUANG X H, XU B. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural net-work[J]. PLoS One201813(11): e0204596.
145 WANG X Q, HOU Z G, ZOU A M, et al. A behavior controller based on spiking neural networks for mo-bile robots[J]. Neurocomputing200871(4-6): 655-666.
146 WANG X Q, HOU Z G, LV F, et al. Mobile robots’ modular navigation controller using spiking neural networks[J]. Neurocomputing2014134: 230-238.
147 NICHOLS E, MCDAID L J, SIDDIQUE N. Biolog-ically inspired SNN for robot control[J]. IEEE Transactions on Cybernetics201343(1): 115-128.
148 SHIM M S, LI P. Biologically inspired reinforcement learning for mobile robot collision avoidance[C]∥ 2017 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2017: 3098-3105.
149 SHALUMOV A, HALALY R, TSUR E E. LiDAR-driven spiking neural network for collision avoidance in autonomous driving[J]. Bioinspiration & Biomimetics202116(6): 066016.
150 JIMENEZ-ROMERO C, SOUSA-RODRIGUES D, JOHNSON J H, et al. A model for foraging ants, controlled by spiking neural networks and double pheromones[DB/OL]. arXiv preprint: 1507.08467, 2015.
151 JIMENEZ-ROMERO C, SOUSA-RODRIGUES D, JOHNSON J H. Designing behaviour in bio-inspired robots using associative topologies of spik-ing-neural-networks[DB/OL]. arXiv preprint: 1509.07035, 2015.
152 JIMENEZA?ROMERO C. A heterosynaptic spiking neural system for the development of autonomous agents[D]. London: Open University, 2017.
153 HUSSAINI S, MILFORD M, FISCHER T. Spiking neural networks for visual place recognition via weighted neuronal assignments[J]. IEEE Robotics and Automation Letters20227(2): 4094-4101.
154 YANG S M, TAN J T, CHEN B D. Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion[J]. Entropy202224(4): 455.
155 POTJANS W, MORRISON A, DIESMANN M. A spiking neural network model of an actor-critic learning agent[J]. Neural Computation200921(2): 301-339.
156 FRéMAUX N, SPREKELER H, GERSTNER W. Reinforcement learning using a continuous time actor-critic framework with spiking neurons[J]. PLoS Computational Biology20139(4): e1003024.
157 ZENNIR M N, BENMOHAMMED M, BOUDJADJA R. Spike-time dependant plasticity in a spiking neural network for robot path planning[C]∥ AIAI Workshops. 2015: 2-13.
158 RUECKERT E, KAPPEL D, TANNEBERG D, et al. Recurrent spiking networks solve planning tasks[J]. Scientific Reports20166: 21142.
159 FRIEDRICH J, LENGYEL M. Goal-directed decision making with spiking neurons[J]. The Journal of Neuroscience201636: 1529-1546.
160 XING D P, LI J L, ZHANG T L, et al. A brain-inspired approach for collision-free movement planning in the small operational space[J]. IEEE Transactions on Neural Networks and Learning Systems202233(5): 2094-2105.
161 STEFFEN L, SILVA R K DA, ULBRICH S, et al. Networks of place cells for representing 3D envi-ronments and path planning[C]∥ 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). Piscataway: IEEE Press, 2020: 1158-1165.
162 KREISER R, RENNER A, SANDAMIRSKAYA Y, et al. Pose estimation and map formation with spiking neural networks: Towards neuromorphic SLAM[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 2159-2166.
163 KREISER R, CARTIGLIA M, MARTEL J N P, et al. A neuromorphic approach to path integration: A head-direction spiking neural network with vision-driven reset[C]∥ 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2018: 1-5.
164 YAO H Y, HUANG H P, HUANG Y C, et al. Fly-intel-a platform for robot navigation based on a brain-inspired spiking neural network[C]∥ 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). Piscataway: IEEE Press, 2019: 219-220.
165 TANG G Z, KUMAR N, MICHMIZOS K P. Rein-forcement co-learning of deep and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware[C]∥ 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2021: 6090-6097.
166 KISHORE A, SARASWAT V, GANGULY U. Sim-plified klinokinesis using spiking neural networks for resource-constrained navigation on the N euromorphic processor loihi[C]∥ 2021 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2021: 1-8.
167 FRICKER P, CHAUHAN T, HURTER C, et al. Event-based extraction of navigation features from unsupervised learning of optic flow patterns[C]∥ Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2022: 702-710.
168 GEVA-SAGIV M, LAS L, YOVEL Y, et al. Spatial cognition in bats and rats: From sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience201516(2): 94-108.
169 YANG Q, LI M J, BIAN H, et al. Bioinspired artifi-cial compound eyes: Characteristic, fabrication, and application[J]. Advanced Materials Technologies20216(10): 2100091.
170 TANIDA J, KUMAGAI T, YAMADA K, et al. Thin observation module by bound optics (TOMBO): An optoelectronic image capturing system[C]∥ Proc SPIE 4089, Optics in Computing 20002000: 1030-1036.
171 JEONG K H, KIM J, LEE L P. Biologically inspired artificial compound eyes[J]. Science2006312(5773): 557-561.
172 LI Z W, XIAO J L. Mechanics and optics of stretch-able elastomeric microlens array for artificial compound eye camera[J]. Journal of Applied Physics2015117(1): 014904.
173 LEE W B, JANG H, PARK S, et al. COMPU-EYE: A high resolution computational compound eye[J]. Optics Express201624(3): 2013-2026.
174 WU S D, JIANG T, ZHANG G X, et al. Artificial compound eye: A survey of the state-of-the-art[J]. Artificial Intelligence Review201748(4): 573-603.
175 LAMBRINOS D, M?LLER R, LABHART T, et al. A mobile robot employing insect strategies for navigation[J]. Robotics and Autonomous Systems200030(1-2): 39-64.
176 WANG Y J, HU X P, LIAN J X, et al. Design of a device for sky light polarization measurements[J]. Sensors201414(8): 14916-14931.
177 胡小平, 毛军, 范晨, 等. 仿生导航技术综述[J]. 导航定位与授时20207(4): 1-10.
  HU X P, MAO J, FAN C, et al. Bionic navigation technology: A survey[J]. Navigation Positioning and Timing20207(4): 1-10 (in Chinese).
178 WANG Y J, HU X P, ZHANG L L, et al. Polarized light compass-aided visual-inertial navigation under foliage environment[J]. IEEE Sensors Journal201717(17): 5646-5653.
179 ZHAO H J, XU W J, ZHANG Y, et al. Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skylight[J]. Optics Express201826(22): 28589-28603.
180 王玉杰, 胡小平, 练军想, 等. 仿生偏振光定向算法及误差分析[J]. 宇航学报201536(2): 211-216.
  WANG Y J, HU X P, LIAN J X, et al. Algorithms and error analysis of bionic orientation based on polarized light[J]. Journal of Astronautics201536(2): 211-216 (in Chinese).
181 WANG Y J, HU X P, LIAN J X, et al. Bionic orien-tation and visual enhancement with a novel polarization camera[J]. IEEE Sensors Journal201717(5): 1316-1324.
182 LI Z Y, YU H P, SHEN T S, et al. Bionic magnetic compass algorithm based on radical pair theory[J]. IEEE Sensors Journal202222(24): 23812-23820.
183 KIM Y, LEE K, LEE J, et al. Bird-inspired self-navigating artificial synaptic compass[J]. ACS Nano202115(12): 20116-20126.
184 QIN S Y, YIN H, YANG C L, et al. A magnetic protein biocompass[J]. Nature Materials201615(2): 217-226.
185 LIU X, SONG W J, WU M, et al. Magnetoelectric phase transition driven by interfacial-engineered Dzyaloshinskii-Moriya interaction[J]. Nature Communications202112(1): 5453.
186 ZHANG J Y, ZHANG T, SHIN H S, et al. Geomag-netic gradient-assisted evolutionary algorithm for long-range underwater navigation[J]. IEEE Transactions on Instrumentation and Measurement202170: 1-12.
187 LICHTSTEINER P, POSCH C, DELBRUCK T. A 128×128 120 dB 15 μs latency asynchronous tem-poral contrast vision sensor[J]. IEEE Journal of Solid-State Circuits200843(2): 566-576.
188 POSCH C, MATOLIN D, WOHLGENANNT R. A QVGA 143dB dynamic range asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression[C]∥ 2010 IEEE International Solid-State Circuits Conference - (ISSCC). Piscataway: IEEE Press, 2010: 400-401.
189 BRANDLI C, MULLER L, DELBRUCK T. Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor[C]∥ 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2014: 686-689.
190 CHEN S, GUO M. Live Demonstration: CeleX-V: A 1M pixel multi-mode event-based sensor[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2020: 1682-1683.
191 DONG S W, HUANG T J, TIAN Y H. Spike camera and its coding methods[C]∥ 2017 Data Compression Conference (DCC). Piscataway: IEEE Press, 2017: 437.
192 STEFFEN L, REICHARD D, WEINLAND J, et al. Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms[J]. Frontiers in Neu-rorobotics201913: 28.
193 MUEGGLER E, HUBER B, SCARAMUZZA D. Event-based, 6-DOF pose tracking for high-speed maneuvers[C]∥ 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 2761-2768.
194 李家宁, 田永鸿. 神经形态视觉传感器的研究进展及应用综述[J]. 计算机学报202144(6): 1258-1286.
  LI J N, TIAN Y H. Recent advances in neuromor-phic vision sensors: A survey[J]. Chinese Journal of Computers202144(6): 1258-1286 (in Chinese).
195 WU W C, SCHENATO L, WOOD R J, et al. Biomimetic sensor suite for flight control of a micromechanical flying insect: Design and experimental results[C]∥ 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). Piscataway: IEEE Press, 2003: 1146-1151.
196 邓磊. 异构融合类脑计算平台的计算模型与关键技术研究[D]. 北京: 清华大学, 2017: 2-18.
  DENG L. Towards the computational model and key technologies on heterogeneous brain-inspired com-puting platform[D]. Beijing: Tsinghua University, 2017: 2-18 (in Chinese).
197 HAN S, LIU X Y, MAO H Z, et al. EIE: efficient inference engine on compressed deep neural network[C]∥ 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). Piscataway: IEEE Press, 2016: 243-254.
198 BENJAMIN B V, GAO P R, MCQUINN E, et al. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations[J]. Proceedings of the IEEE2014102(5): 699-716.
199 SCHEMMEL J, BRüDERLE D, GRüBL A, et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling[C]∥ 2010 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2010: 1947-1950.
200 FURBER S B, GALLUPPI F, TEMPLE S, et al. The SpiNNaker Project[J]. Proceedings of the IEEE2014102(5): 652-665.
201 AKOPYAN F, SAWADA J, CASSIDY A, et al. TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems201534(10): 1537-1557.
202 DAVIES M, SRINIVASA N, LIN T H, et al. Loihi: A neuromorphic manycore processor with on-chip learning[J]. IEEE Micro201838(1): 82-99.
203 Spiking neural network integrated circuits: A review of trends and future directions[C]∥ 2022 IEEE Custom Integrated Circuits Conference (CICC). Piscataway: IEEE Press, 2022: 1-8.
204 HWU T, ISBELL J, OROS N, et al. A self-driving robot using deep convolutional neural networks on neuromorphic hardware[C]∥ 2017 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2017: 635-641.
205 ALLISON S L, FAGAN A M, MORRIS J C, et al. Spatial navigation in preclinical Alzheimer’s dis-ease[J]. Journal of Alzheimer’s Disease: JAD201652(1): 77-90.
206 SENDHOFF B. Creating brain-like intelligence: From basic principles to complex intelligent systems[M]. Berlin: Springer, 2009.
207 SMITH L, GASSER M. The development of em-bodied cognition: Six lessons from babies[J]. Artifi-cial Life200511(1-2): 13-29.
208 文超, 马涛, 王偲, 等. 昆虫复眼结构及视觉导航研究进展[J]. 应用昆虫学报201956(1): 28-36.
  WEN C, MA T, WANG C, et al. Progress in research on the compound eye structure and visual navigation of insects[J]. Chinese Journal of Applied Entomology201956(1): 28-36 (in Chinese).
209 吴军, 王玲容, 黄明益, 等. 多几何约束下的鱼眼相机单像高精度标定[J]. 光学学报201838(11): 199-210.
  WU J, WANG L R, HUANG M Y, et al. High preci-sion calibration of fisheye camera with single image under multiple geometric constraints[J]. Acta Optica Sinica201838(11): 199-210 (in Chinese).
Outlines

/