ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation
Received date: 2023-02-17
Revised date: 2023-03-20
Accepted date: 2023-03-31
Online published: 2023-04-11
Supported by
National Natural Science Foundation of China(61973328);Ministry of Education-China Mobile Scientific Research Fund(MCM2020-J-1);Shenzhen Science and Technology Program(GXWD20201231165807008)
The rapid development of brain and neuroscience in recent decades has initially revealed the neural mechanism of animal navigation. Drawing on the brain neural structures and information processing mechanisms, the study of brain-inspired intelligent navigation systems provides new inspiration for low-power, highly robust autonomous intelligent navigation in complex environments. Based on a detailed review of the neural mechanisms of animal spatial navigation, this paper then outlines and discusses current intelligent algorithms for robotic bionic brain-inspired navigation, which can be categorized into three types according to the three types of neural networks used to process navigation information for intelligent navigation: attractor neural networks, deep reinforcement learning, and spiking neural networks. Then, the ways for implementing brain-inspired navigation, including bionic intelligent sensors and neuromorphic processor platforms, are sorted out. Finally, the development trend of brain-inspired navigation is discussed, including further exploration of the brain neural mechanism of navigation in the biological world and its information processing process with low energy consumption and high robustness mechanism, subcategorization of the conceptual connotation of brain-inspired navigation, and the ways to improve the evaluation index and the unified implementation framework.
Xiangwei ZHU , Dan SHEN , Kai XIAO , Yuexin MA , Xiang LIAO , Fuqiang GU , Fangwen YU , Kefu GAO , Jingnan LIU . Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 28569 -028569 . DOI: 10.7527/S1000-6893.2023.28569
1 | MOURITSEN H. Long-distance navigation and magnetoreception in migratory animals[J]. Nature, 2018, 558(7708): 50-59. |
2 | 曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报, 2016, 39(1): 212-222. |
ZENG Y, LIU C L, TAN T N. Retrospect and out-look of brain-inspired intelligence research[J]. Chinese Journal of Computers, 2016, 39(1): 212-222 (in Chinese). | |
3 | 徐波, 刘成林, 曾毅. 类脑智能研究现状与发展思考[J]. 中国科学院院刊, 2016, 31(7): 793-802. |
XU B, LIU C L, ZENG Y. Research status and de-velopments of brain-inspired intelligence[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(7): 793-802 (in Chinese). | |
4 | 余芳文. 面向三维环境的类脑同步定位与制图系统[D]. 武汉: 中国地质大学, 2020: 15-53. |
YU F W. Brain inspired SLAM system for 3D envi-ronments[D]. Wuhan: China University of Geosci-ences, 2020: 15-53 (in Chinese). | |
5 | 杨闯, 刘建业, 熊智, 等. 由感知到动作决策一体化的类脑导航技术研究现状与未来发展[J]. 航空学报, 2020, 41(1): 023280. |
YANG C, LIU J Y, XIONG Z, et al. Brain-inspired navigation technology integrating perception and action decision: A review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023280 (in Chinese). | |
6 | O’KEEFE J, DOSTROVSKY J. The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171-175. |
7 | HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801-806. |
8 | TAUBE J S, MULLER R U, RANCK J B JR. Head-direction cells recorded from the postsubiculum in freely moving rats. I[J] The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1990, 10(2): 420-435. |
9 | ROWLAND D C, ROUDI Y, MOSER M B, et al. Ten years of grid cells [J]. Annual Review of Neuroscience, 2016, 39(1): 19-40. |
10 | MOSER E I, ROUDI Y, WITTER M P, et al. Grid cells and cortical representation[J]. Nature Reviews Neuroscience, 2014, 15(7): 466-481. |
11 | TUKKER J J, BEED P, BRECHT M, et al. Microcircuits for spatial coding in the medial entorhinal cortex[J]. Physiological Reviews, 2022, 102(2): 653-688. |
12 | CAPPAERT N L M, VAN STRIEN N M, WITTER M P. Chapter 20-hippocampal formation[M]∥ The Rat Nervous System (Fourth Edition). Amsterdam: Elsevier, 2015: 511-573. |
13 | KROPFF E, CARMICHAEL J E, MOSER M B, et al. Speed cells in the medial entorhinal cortex[J]. Nature, 2015, 523(7561): 419-424. |
14 | MACDONALD C J, LEPAGE K Q, EDEN U T, et al. Hippocampal “time cells” bridge the gap in memory for discontiguous events[J]. Neuron, 2011, 71(4): 737-749. |
15 | SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhi-nal cortex[J]. Science, 2008, 322(5909): 1865-1868. |
16 | MOSER M B, ROWLAND D C, MOSER E I. Place cells, grid cells, and memory[J]. Cold Spring Harbor Perspectives in Biology, 2015, 7(2): a021808. |
17 | HORI E, NISHIO Y, KAZUI K, et al. Place-related neural responses in the monkey hippocampal formation in a virtual space[J]. Hippocampus, 2005, 15(8): 991-996. |
18 | EKSTROM A D, KAHANA M J, CAPLAN J B, et al. Cellular networks underlying human spatial navigation[J]. Nature, 2003, 425(6954): 184-188. |
19 | YARTSEV M M, ULANOVSKY N. Representation of three-dimensional space in the hippocampus of flying bats[J]. Science, 2013, 340(6130): 367-372. |
20 | WOHLGEMUTH M J, YU C, MOSS C F. 3D hippocampal place field dynamics in free-flying echolocating bats[J]. Frontiers in Cellular Neuroscience, 2018, 12:27. |
21 | GRIEVES R M, JEDIDI-AYOUB S, MISHCHANCHUK K, et al. The place-cell representation of volumetric space in rats[J]. Nature Communications, 2020, 11(1): 789. |
22 | KIM M, JEFFERY K J, MAGUIRE E A. Multivoxel pattern analysis reveals 3D place information in the human hippocampus[J]. The Journal of Neuroscience, 2017, 37(16): 4270-4279. |
23 | FINKELSTEIN A, LAS L, ULANOVSKY N. 3-D maps and compasses in the brain[J]. Annual Review of Neuroscience, 2016, 39(1): 171-196. |
24 | THOMPSON L T, BEST P J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats[J]. Brain Research, 1990, 509(2): 299-308. |
25 | MULLER R U, KUBIE J L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1987, 7(7): 1951-1968. |
26 | LEUTGEB S, LEUTGEB J K, BARNES C A, et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles[J]. Science, 2005, 309(5734): 619-623. |
27 | RANCK J B JR. Head direction cells in the deep layer of dorsal presubiculum in freely moving rats[J]. Society of Neuroscience Abstract, 1984, 10: 599. |
28 | LONG X, YOUNG C K, ZHANG S J. Sharp tuning of head direction by somatosensory fast-spiking interneurons[DB/OL]. bioRxiv preprint: 2020.02.03.933143, 2020. |
29 | SARGOLINI F, FYHN M, HAFTING T, et al. Con-junctive representation of position, direction, and velocity in entorhinal cortex[J]. Science, 2006, 312(5774): 758-762. |
30 | TAUBE J S. The head direction signal: Origins and sensory-motor integration[J]. Annual Review of Neuroscience, 2007, 30: 181-207. |
31 | LACHANCE P A, DUMONT J R, OZEL P, et al. Commutative properties of head direction cells dur-ing locomotion in 3D: Are all routes equal?[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2020, 40(15): 3035-3051. |
32 | FINKELSTEIN A, DERDIKMAN D, RUBIN A, et al. Three-dimensional head-direction coding in the bat brain[J]. Nature, 2015, 517(7533): 159-164. |
33 | FINKELSTEIN A, ULANOVSKY N, TSODYKS M, et al. Optimal dynamic coding by mixed-dimensionality neurons in the head-direction system of bats[J]. Nature Communications, 2018, 9(1): 3590. |
34 | KIM M, MAGUIRE E A. Encoding of 3D head direction information in the human brain[J]. Hippocampus, 2019, 29(7): 619-629. |
35 | APOSTEL A, ROSE J. Avian navigation: Head direction cells in the quail hippocampus[J]. Current Biology, 2021, 31(12): R781-R783. |
36 | STACKMAN R W, TULLMAN M L, TAUBE J S. Maintenance of rat head direction cell firing during locomotion in the vertical plane[J]. Journal of Neu-rophysiology, 2000, 83(1): 393-405. |
37 | YODER R M, TAUBE J S. The vestibular contribution to the head direction signal and navigation[J]. Frontiers in Integrative Neuroscience, 2014, 8:32. |
38 | TAUBE J S, MULLER R U, RANCK J B JR. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1990, 10(2): 436-447. |
39 | RAUDIES F, BRANDON M P, CHAPMAN G W, et al. Head direction is coded more strongly than movement direction in a population of entorhinal neurons[J]. Brain Research, 2015, 1621: 355-367. |
40 | BOCCARA C N, SARGOLINI F, THORESEN V H, et al. Grid cells in pre- and parasubiculum[J]. Nature Neuroscience, 2010, 13(8): 987-994. |
41 | KILLIAN N J, JUTRAS M J, BUFFALO E A. A map of visual space in the primate entorhinal cortex[J]. Nature, 2012, 491(7426): 761-764. |
42 | YARTSEV M M, WITTER M P, ULANOVSKY N. Grid cells without theta oscillations in the entorhinal cortex of bats[J]. Nature, 2011, 479(7371): 103-107. |
43 | JACOBS J, WEIDEMANN C T, MILLER J F, et al. Direct recordings of grid-like neuronal activity in human spatial navigation[J]. Nature Neuroscience, 2013, 16(9): 1188-1190. |
44 | GINOSAR G, ALJADEFF J, BURAK Y, et al. Locally ordered representation of 3D space in the entorhinal cortex[J]. Nature, 2021, 596(7872): 404-409. |
45 | KIM M, MAGUIRE E A. Can we study 3D grid codes non-invasively in the human brain? Methodological considerations and fMRI findings[J]. NeuroImage, 2019, 186: 667-678. |
46 | STEMMLER M, MATHIS A, HERZ A V M. Connecting multiple spatial scales to decode the population activity of grid cells[J]. Science Advances, 2015, 1(11): e1500816. |
47 | STENSOLA H, STENSOLA T, SOLSTAD T, et al. The entorhinal grid map is discretized[J]. Nature, 2012, 492(7427): 72-78. |
48 | BARRY C, HAYMAN R, BURGESS N, et al. Experience-dependent rescaling of entorhinal grids[J]. Nature Neuroscience, 2007, 10(6): 682-684. |
49 | HARDCASTLE K, GANGULI S, GIOCOMO L M. Environmental boundaries as an error correction mechanism for grid cells[J]. Neuron, 2015, 86(3): 827-839. |
50 | SREENIVASAN S, FIETE I. Grid cells generate an analog error-correcting code for singularly precise neural computation[J]. Nature Neuroscience, 2011, 14(10): 1330-1337. |
51 | TOWSE B W, BARRY C, BUSH D, et al. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 369(1635): 20130290. |
52 | O’KEEFE J, BURGESS N, DONNETT J G, et al. Place cells, navigational accuracy, and the human hippocampus[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1998, 353(1373): 1333-1340. |
53 | JEFFERY K J. The Neurobiology of Spatial Behaviour[M]. Oxford: Oxford University Press, 2003. |
54 | WILLS T J, BARRY C, CACUCCI F. The abrupt development of adult-like grid cell firing in the medial entorhinal cortex[J]. Frontiers in Neural Circuits, 2012, 6: 21. |
55 | MALLORY C S, HARDCASTLE K, CAMPBELL M G, et al. Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals[J]. Nature Communications, 2021, 12(1): 671. |
56 | SPALLA D, TREVES A, BOCCARA C N. Angular and linear speed cells in the parahippocampal circuits[J]. Nature Communications, 2022, 13(1): 1907. |
57 | VARGHA-KHADEM F, GADIAN D G, WATKINS K E, et al. Differential effects of early hippocampal pathology on episodic and semantic memory[J]. Science, 1997, 277(5324): 376-380. |
58 | KRAUS B J, ROBINSON R J 2nd, WHITE J A, et al. Hippocampal time cells: Time versus path integration[J]. Neuron, 2013, 78(6): 1090-1101. |
59 | SALZ D M, TIGANJ Z, KHASNABISH S, et al. Time cells in hippocampal area CA3[J]. Journal of Neuroscience, 2016, 36(28): 7476-7484. |
60 | KRAUS B J, BRANDON M P, ROBINSON R J, et al. During running in place, grid cells integrate elapsed time and distance run[J]. Neuron, 2015, 88(3): 578-589. |
61 | TSAO A, SUGAR J, LU L, et al. Integrating time from experience in the lateral entorhinal cortex[J]. Nature, 2018, 561(7721): 57-62. |
62 | AGHAJAN Z M, KREIMAN G, FRIED I. Minute-scale periodicity of neuronal firing in the human entorhinal cortex[M]. bioRxiv preprint: 2022.05.05.490703, 2022. |
63 | SHIMBO A, IZAWA E I, FUJISAWA S. Scalable representation of time in the hippocampus[J]. Science Advances, 2021, 7(6): eabd7013. |
64 | O’KEEFE J, BURGESS N. Geometric determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381(6581): 425-428. |
65 | SAVELLI F, YOGANARASIMHA D, KNIERIM J J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex[J]. Hippocampus, 2008, 18(12): 1270-1282. |
66 | LEVER C, BURTON S, JEEWAJEE A, et al. Boundary vector cells in the Subiculum of the Hippocampal Formation[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2009, 29(31): 9771-9777. |
67 | BJERKNES T L, MOSER E I, MOSER M B. Representation of geometric borders in the developing rat[J]. Neuron, 2014, 82(1): 71-78. |
68 | HINMAN J R, CHAPMAN G W, HASSELMO M E. Neuronal representation of environmental boundaries in egocentric coordinates[J]. Nature Communications, 2019, 10(1): 2772. |
69 | ALEXANDER A S, CARSTENSEN L C, HINMAN J R, et al. Egocentric boundary vector tuning of the retrosplenial cortex[J]. Science Advances, 2020, 6(8): eaaz2322. |
70 | LIAN Y, WILLIAMS S, ALEXANDER A S, et al. Learning the vector coding of egocentric boundary cells from visual data[DB/OL]. bioRxiv preprint: 2022.01.28.478267, 2022. |
71 | H?YDAL ? A, SKYT?EN E R, ANDERSSON S O, et al. Object-vector coding in the medial entorhinal cortex[J]. Nature, 2019, 568(7752): 400-404. |
72 | WANG C, CHEN X J, KNIERIM J J. Egocentric and allocentric representations of space in the rodent brain[J]. Current Opinion in Neurobiology, 2020, 60: 12-20. |
73 | ROLLS E T. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation[J]. Hippocampus, 2020, 30(4): 332-353. |
74 | BALL D, HEATH S, WILES J, et al. OpenRatSLAM: An open source brain-based SLAM system[J]. Autonomous Robots, 2013, 34(3): 149-176. |
75 | YU F W, SHANG J G, HU Y J, et al. NeuroSLAM: A brain-inspired SLAM system for 3D environments[J]. Biological Cybernetics, 2019, 113(5): 515-545. |
76 | WU S, WONG K Y M, FUNG C C A, et al Continuous attractor neural networks : Candidate of a canonical model for neural information representa-tion[J]. F1000Research, 2016, 5(16): 209-226. |
77 | BANINO A, BARRY C, URIA B, et al. Vector-based navigation using grid-like representations in artificial agents[J]. Nature, 2018, 557(7705): 429-433. |
78 | PEI J, DENG L, SONG S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572(7767): 106-111. |
79 | 斯白露, 罗壹凡. 空间记忆与类脑导航研究进展[J]. 人工智能, 2020, 7(1): 16-31. |
SI B L, LUO Y F. Research progress of spatial memory and brain-like navigation[J]. AI-View, 2020, 7(1): 16-31 (in Chinese). | |
80 | BURGESS N, BARRY C, O’KEEFE J. An oscillatory interference model of grid cell firing[J]. Hippocampus, 2007, 17(9): 801-812. |
81 | BURGESS N. Grid cells and theta as oscillatory interference: Theory and predictions[J]. Hippocampus, 2008, 18(12): 1157-1174. |
82 | BUSH D, BARRY C, MANSON D, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3): 507-520. |
83 | FIETE I R, BURAK Y, BROOKINGS T. What grid cells convey about rat location[J]. Journal of Neuroscience, 2008, 28(27): 6858-6871. |
84 | 杨闯, 刘建业, 熊智, 等. 基于多尺度网格细胞模型的无人机类脑矢量导航方法[J]. 中国惯性技术学报, 2020, 28(2): 179-185. |
YANG C, LIU J Y, XIONG Z, et al. Brain-inspired vector navigation method based on model of multi-scale grid cells[J]. Journal of Chinese Inertial Technology, 2020, 28(2): 179-185 (in Chinese). | |
85 | 谷雨, 赵修斌, 代传金. 基于网格细胞模型的类脑大尺度空间矢量导航方法[J]. 控制理论与应用, 2021, 38(12): 2094-2100. |
GU Y, ZHAO X B, DAI C J. Brain-like large-scale spatial vector navigation method based on grid cell model[J]. Control Theory & Applications, 2021, 38(12): 2094-2100 (in Chinese). | |
86 | CANTERO J L, ATIENZA M, STICKGOLD R, et al. Sleep-dependent θ oscillations in the human hippo-campus and neocortex[J]. The Journal of Neuroscience, 2003, 23(34): 10897-10903. |
87 | ZILLI E A, YOSHIDA M, TAHVILDARI B, et al. Evaluation of the oscillatory interference model of grid cell firing through analysis and measured period variance of some biological oscillators[J]. PLoS Computational Biology, 2009, 5(11): e1000573. |
88 | AMARI S I. Dynamics of pattern formation in lateral-inhibition type neural fields[J]. Biological Cybernetics, 1977, 27(2): 77-87. |
89 | BEN-YISHAI R, BAR-OR R L, SOMPOLINSKY H. Theory of orientation tuning in visual cortex.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(9): 3844-3848. |
90 | MI Y Y, KATKOV M, TSODYKS M. Synaptic correlates of working memory capacity[J]. Neuron, 2017, 93(2): 323-330. |
91 | ZHANG K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory[J]. The Journal of Neuroscience, 1996, 16(6): 2112-2126. |
92 | GOODRIDGE J P, TOURETZKY D S. Modeling attractor deformation in the rodent head-direction system[J]. Journal of Neurophysiology, 2000, 83(6): 3402-3410. |
93 | BATTAGLIA F P, TREVES A. Attractor neural networks storing multiple space representations: A model for hippocampal place fields[J]. Physical Review E, 1998, 58(6): 7738-7753. |
94 | TSODYKS M. Attractor neural network models of spatial maps in hippocampus[J]. Hippocampus, 1999, 9(4): 481-489. |
95 | STRINGER S M, TRAPPENBERG T P, ROLLS E T, et al. Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells[J]. Network: Computation in Neural Systems, 2002, 13(2): 217-242. |
96 | WITTER M P, MOSER E I. Spatial representation and the architecture of the entorhinal cortex[J]. Trends in Neurosciences, 2006, 29(12): 671-678. |
97 | BURAK Y, FIETE I R. Accurate path integration in continuous attractor network models of grid cells[J]. PLoS Computational Biology, 2009, 5(2): e1000291. |
98 | YOON K, BUICE M A, BARRY C, et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells[J]. Nature Neuroscience, 2013, 16(8): 1077-1084. |
99 | MILFORD M J, WYETH G F, PRASSER D. RatSLAM: A hippocampal model for simultaneous localization and mapping[C]∥ IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. Piscataway: IEEE Press, 2004: 403-408. |
100 | MILFORD M J, PRASSER D, WYETH G. Experience mapping: Producing spatially continuous environment representations using RatSLAM[C]∥ Proceedings of the 2005 Australasian Confer-ence on Robotics and Automation, ACRA 2005, 2005: 1-11. |
101 | MILFORD M J, WYETH G F. Mapping a suburb with a single camera using a bio-logically inspired SLAM system[J]. IEEE Transactions on Robotics, 2008, 24(5): 1038-1053. |
102 | MILFORD M, WYETH G. Persistent navigation and mapping using a biologically inspired SLAM system[J]. The International Journal of Robotics Research, 2010, 29(9): 1131-1153. |
103 | STECKEL J, PEREMANS H. BatSLAM: Simultaneous localization and mapping using biomimetic sonar[J]. PLoS One, 2013, 8(1): e54076. |
104 | JACOBSON A, CHEN Z T, MILFORD M. Auton-omous multisensor calibration and closed-loop fusion for SLAM[J]. Journal of Field Robotics, 2015, 32(1): 85-122. |
105 | ?ATAL O, JANSEN W, VERBELEN T, et al. LatentSLAM: Unsupervised multi-sensor representation learning for localization and mapping[C]∥ 2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 6739-6745. |
106 | YUAN M L, TIAN B, SHIM V A, et al. An entorhi-nal-hippocampal model for simultaneous cognitive map building[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence, 2015. |
107 | MULAS M, WANIEK N, CONRADT J. Hebbian plasticity realigns grid cell activity with external sensory cues in continuous attractor models[J]. Frontiers in Computational Neuroscience, 2016, 10:13. |
108 | ZENG T P, SI B L. Cognitive mapping based on conjunctive representations of space and movement[J]. Frontiers in Neurorobotics, 2017, 11: 61. |
109 | 于乃功, 苑云鹤, 李倜, 等. 一种基于海马认知机理的仿生机器人认知地图构建方法[J]. 自动化学报, 2018, 44(1): 52-73. |
YU N G, YUAN Y H, LI T, et al. A cognitive map building algorithm by means of cognitive mechanism of hippocampus[J]. Acta Automatica Sinica, 2018, 44(1): 52-73 (in Chinese). | |
110 | KRUPIC J, BURGESS N, O’KEEFE J. Neural representations of location composed of spatially periodic bands[J]. Science, 2012, 337(6096): 853-857. |
111 | SILVEIRA L, GUTH F, DREWS-JR P, et al. An open-source bio-inspired solution to underwater SLAM[J]. IFAC-PapersOnLine, 2015, 48(2): 212-217. |
112 | YANG C, XIONG Z, LIU J Y, et al. A path integra-tion approach based on multiscale grid cells for large-scale navigation[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(3): 1009-1020. |
113 | MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. |
114 | SUN R, HSU L T, XUE D, et al. SUN R, HSU L T, XUE D B,et al. GPS signal reception classification using adaptive neuro-fuzzy inference system[J]. Journal of Navigation, 2019, 72(3): 685-701. |
115 | PHAN Q H, TAN S L, MCLOUGHLIN I, et al. A unified framework for GPS code and carrier-phase multipath mitigation using support vector regression[J]. Advances in Artificial Neural Systems, 2013, 2013: 1-14. |
116 | QUAN Y M, LAU L, ROBERTS G W, et al. Convo-lutional neural network based multipath detection method for static and kinematic GPS high precision positioning[J]. Remote Sensing, 2018, 10(12): 2052. |
117 | SUN R, WANG G Y, ZHANG W Y, et al. A gradient boosting decision tree based GPS signal reception classification algorithm[J]. Applied Soft Computing, 2020, 86: 105942. |
118 | SüNDERHAUF N, SHIRAZI S, DAYOUB F, et al. On the performance of ConvNet features for place recognition[C]∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 4297-4304. |
119 | DING L, FENG C. DeepMapping: Unsupervised map estimation from multiple point clouds[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 8642-8651. |
120 | LI J X, TANG H J, YAN R. A hybrid loop closure detection method based on brain-inspired models[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(4): 1532-1543. |
121 | 杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(08): 1006-1012. |
YANG Y X, YANG C, REN X. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50 (8): 1006-1012 (in Chinese). | |
122 | 刘经南, 罗亚荣, 郭迟, 等. PNT智能与智能PNT[J]. 测绘学报, 2022, 51(6): 811-828. |
LIU J N, LUO Y R, GUO C, et al. PNT intelligence and intelligent PNT[J]. Acta Geodaetica et Carto-graphica Sinica, 2022, 51(6): 811-828 (in Chinese). | |
123 | ARLEO A, GERSTNER W. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity[J]. Biological Cybernetics, 2000, 83(3): 287-299. |
124 | KANITSCHEIDER I, FIETE I. Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems[C]∥ Proceedings of the 31st International Conference on Neural Infor-mation Processing Systems. New York: ACM, 2017: 4532-4541. |
125 | CUEVA C J, WEI X X. Emergence of grid-like representations by training recurrent neural networks to perform spatial localization[DB/OL]. arXiv preprint: 1803.07770, 2018. |
126 | ROSENBAUM D, BESSE F, VIOLA F, et al. Learn-ing models for visual 3D localization with implicit mapping[DB/OL]. arXiv preprint: 1807.03149, 2018. |
127 | MAI G, JANOWICZ K, YAN B, et al. Multi-scale representation learning for spatial feature distributions using grid cells[DB/OL]. arXiv preprint: 2003.00824, 2020. |
128 | BEECHING E, DIBANGOYE J, SIMONIN O, et al. EgoMap: Projective mapping and structured egocentric memory for deep RL[C]∥ Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2021: 525-540. |
129 | 郭迟, 罗宾汉, 李飞, 等. 类脑导航算法:综述与验证[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1819-1831. |
GUO C, LUO B H, LI F, et al. Review and verifica-tion for brain-like navigation algorithm[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1819-1831 (in Chinese). | |
130 | F?RSTER A, GRAVES A, SCHMIDHUBER J. RNN-based learning of compact maps for efficient robot localization[C]∥ 15 th European Symposium on Artificial Neural Networks, 2007. |
131 | MOHAMMADI M, AL-FUQAHA A, GUIZANI M, et al. Semisupervised deep reinforcement learning in sup-port of IoT and smart city services[J]. IEEE Internet of Things Journal, 2018, 5(2): 624-635. |
132 | LOQUERCIO A, KAUFMANN E, RANFTL R, et al. Learning high-speed flight in the wild[J]. Science Robotics, 2021, 6(59): eabg5810. |
133 | MIROWSKI P, GRIMES M K, MALINOWSKI M, et al. Learning to navigate in cities without a map[DB/OL]. arXiv preprint: 1804.00168, 2018. |
134 | GU Y, CHEN Y Q, LIU J F, et al. Semi-supervised deep extreme learning machine for Wi-Fi based localization[J]. Neurocomputing, 2015, 166: 282-293. |
135 | ZHANG W, LIU K, ZHANG W D, et al. Deep Neural Networks for wireless localization in indoor and outdoor environments[J]. Neurocomputing, 2016, 194: 279-287. |
136 | LUO J H, GAO H B. Deep belief networks for fingerprinting indoor localization using ultrawideband technology[J]. International Journal of Distributed Sensor Networks, 2016, 12(1): 5840916. |
137 | SAVELLI F, KNIERIM J J. AI mimics brain codes for navigation[J]. Nature, 2018, 557(7705): 313-314. |
138 | MAASS W. Networks of spiking neurons: The third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659-1671. |
139 | TAVANAEI A, GHODRATI M, KHERADPISHEH S R, et al. Deep learning in spiking neural networks[J]. Neural Networks, 2019, 111: 47-63. |
140 | VANRULLEN R, GUYONNEAU R, THORPE S J. Spike times make sense[J]. Trends in Neurosciences, 2005, 28(1): 1-4. |
141 | WOLFE J, HOUWELING A R, BRECHT M. Sparse and powerful cortical spikes[J]. Current Opinion in Neurobiology, 2010, 20(3): 306-312. |
142 | ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617. |
143 | ZHANG W R, LI P. Spike-train level backpropaga-tion for training deep recurrent spiking neural net-works[DB/OL]. arXiv preprint: 1908.06378, 2019. |
144 | DONG M, HUANG X H, XU B. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural net-work[J]. PLoS One, 2018, 13(11): e0204596. |
145 | WANG X Q, HOU Z G, ZOU A M, et al. A behavior controller based on spiking neural networks for mo-bile robots[J]. Neurocomputing, 2008, 71(4-6): 655-666. |
146 | WANG X Q, HOU Z G, LV F, et al. Mobile robots’ modular navigation controller using spiking neural networks[J]. Neurocomputing, 2014, 134: 230-238. |
147 | NICHOLS E, MCDAID L J, SIDDIQUE N. Biolog-ically inspired SNN for robot control[J]. IEEE Transactions on Cybernetics, 2013, 43(1): 115-128. |
148 | SHIM M S, LI P. Biologically inspired reinforcement learning for mobile robot collision avoidance[C]∥ 2017 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2017: 3098-3105. |
149 | SHALUMOV A, HALALY R, TSUR E E. LiDAR-driven spiking neural network for collision avoidance in autonomous driving[J]. Bioinspiration & Biomimetics, 2021, 16(6): 066016. |
150 | JIMENEZ-ROMERO C, SOUSA-RODRIGUES D, JOHNSON J H, et al. A model for foraging ants, controlled by spiking neural networks and double pheromones[DB/OL]. arXiv preprint: 1507.08467, 2015. |
151 | JIMENEZ-ROMERO C, SOUSA-RODRIGUES D, JOHNSON J H. Designing behaviour in bio-inspired robots using associative topologies of spik-ing-neural-networks[DB/OL]. arXiv preprint: 1509.07035, 2015. |
152 | JIMENEZA?ROMERO C. A heterosynaptic spiking neural system for the development of autonomous agents[D]. London: Open University, 2017. |
153 | HUSSAINI S, MILFORD M, FISCHER T. Spiking neural networks for visual place recognition via weighted neuronal assignments[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4094-4101. |
154 | YANG S M, TAN J T, CHEN B D. Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion[J]. Entropy, 2022, 24(4): 455. |
155 | POTJANS W, MORRISON A, DIESMANN M. A spiking neural network model of an actor-critic learning agent[J]. Neural Computation, 2009, 21(2): 301-339. |
156 | FRéMAUX N, SPREKELER H, GERSTNER W. Reinforcement learning using a continuous time actor-critic framework with spiking neurons[J]. PLoS Computational Biology, 2013, 9(4): e1003024. |
157 | ZENNIR M N, BENMOHAMMED M, BOUDJADJA R. Spike-time dependant plasticity in a spiking neural network for robot path planning[C]∥ AIAI Workshops. 2015: 2-13. |
158 | RUECKERT E, KAPPEL D, TANNEBERG D, et al. Recurrent spiking networks solve planning tasks[J]. Scientific Reports, 2016, 6: 21142. |
159 | FRIEDRICH J, LENGYEL M. Goal-directed decision making with spiking neurons[J]. The Journal of Neuroscience, 2016, 36: 1529-1546. |
160 | XING D P, LI J L, ZHANG T L, et al. A brain-inspired approach for collision-free movement planning in the small operational space[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2094-2105. |
161 | STEFFEN L, SILVA R K DA, ULBRICH S, et al. Networks of place cells for representing 3D envi-ronments and path planning[C]∥ 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). Piscataway: IEEE Press, 2020: 1158-1165. |
162 | KREISER R, RENNER A, SANDAMIRSKAYA Y, et al. Pose estimation and map formation with spiking neural networks: Towards neuromorphic SLAM[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 2159-2166. |
163 | KREISER R, CARTIGLIA M, MARTEL J N P, et al. A neuromorphic approach to path integration: A head-direction spiking neural network with vision-driven reset[C]∥ 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2018: 1-5. |
164 | YAO H Y, HUANG H P, HUANG Y C, et al. Fly-intel-a platform for robot navigation based on a brain-inspired spiking neural network[C]∥ 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). Piscataway: IEEE Press, 2019: 219-220. |
165 | TANG G Z, KUMAR N, MICHMIZOS K P. Rein-forcement co-learning of deep and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware[C]∥ 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2021: 6090-6097. |
166 | KISHORE A, SARASWAT V, GANGULY U. Sim-plified klinokinesis using spiking neural networks for resource-constrained navigation on the N euromorphic processor loihi[C]∥ 2021 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2021: 1-8. |
167 | FRICKER P, CHAUHAN T, HURTER C, et al. Event-based extraction of navigation features from unsupervised learning of optic flow patterns[C]∥ Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2022: 702-710. |
168 | GEVA-SAGIV M, LAS L, YOVEL Y, et al. Spatial cognition in bats and rats: From sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(2): 94-108. |
169 | YANG Q, LI M J, BIAN H, et al. Bioinspired artifi-cial compound eyes: Characteristic, fabrication, and application[J]. Advanced Materials Technologies, 2021, 6(10): 2100091. |
170 | TANIDA J, KUMAGAI T, YAMADA K, et al. Thin observation module by bound optics (TOMBO): An optoelectronic image capturing system[C]∥ Proc SPIE 4089, Optics in Computing 2000, 2000: 1030-1036. |
171 | JEONG K H, KIM J, LEE L P. Biologically inspired artificial compound eyes[J]. Science, 2006, 312(5773): 557-561. |
172 | LI Z W, XIAO J L. Mechanics and optics of stretch-able elastomeric microlens array for artificial compound eye camera[J]. Journal of Applied Physics, 2015, 117(1): 014904. |
173 | LEE W B, JANG H, PARK S, et al. COMPU-EYE: A high resolution computational compound eye[J]. Optics Express, 2016, 24(3): 2013-2026. |
174 | WU S D, JIANG T, ZHANG G X, et al. Artificial compound eye: A survey of the state-of-the-art[J]. Artificial Intelligence Review, 2017, 48(4): 573-603. |
175 | LAMBRINOS D, M?LLER R, LABHART T, et al. A mobile robot employing insect strategies for navigation[J]. Robotics and Autonomous Systems, 2000, 30(1-2): 39-64. |
176 | WANG Y J, HU X P, LIAN J X, et al. Design of a device for sky light polarization measurements[J]. Sensors, 2014, 14(8): 14916-14931. |
177 | 胡小平, 毛军, 范晨, 等. 仿生导航技术综述[J]. 导航定位与授时, 2020, 7(4): 1-10. |
HU X P, MAO J, FAN C, et al. Bionic navigation technology: A survey[J]. Navigation Positioning and Timing, 2020, 7(4): 1-10 (in Chinese). | |
178 | WANG Y J, HU X P, ZHANG L L, et al. Polarized light compass-aided visual-inertial navigation under foliage environment[J]. IEEE Sensors Journal, 2017, 17(17): 5646-5653. |
179 | ZHAO H J, XU W J, ZHANG Y, et al. Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skylight[J]. Optics Express, 2018, 26(22): 28589-28603. |
180 | 王玉杰, 胡小平, 练军想, 等. 仿生偏振光定向算法及误差分析[J]. 宇航学报, 2015, 36(2): 211-216. |
WANG Y J, HU X P, LIAN J X, et al. Algorithms and error analysis of bionic orientation based on polarized light[J]. Journal of Astronautics, 2015, 36(2): 211-216 (in Chinese). | |
181 | WANG Y J, HU X P, LIAN J X, et al. Bionic orien-tation and visual enhancement with a novel polarization camera[J]. IEEE Sensors Journal, 2017, 17(5): 1316-1324. |
182 | LI Z Y, YU H P, SHEN T S, et al. Bionic magnetic compass algorithm based on radical pair theory[J]. IEEE Sensors Journal, 2022, 22(24): 23812-23820. |
183 | KIM Y, LEE K, LEE J, et al. Bird-inspired self-navigating artificial synaptic compass[J]. ACS Nano, 2021, 15(12): 20116-20126. |
184 | QIN S Y, YIN H, YANG C L, et al. A magnetic protein biocompass[J]. Nature Materials, 2016, 15(2): 217-226. |
185 | LIU X, SONG W J, WU M, et al. Magnetoelectric phase transition driven by interfacial-engineered Dzyaloshinskii-Moriya interaction[J]. Nature Communications, 2021, 12(1): 5453. |
186 | ZHANG J Y, ZHANG T, SHIN H S, et al. Geomag-netic gradient-assisted evolutionary algorithm for long-range underwater navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12. |
187 | LICHTSTEINER P, POSCH C, DELBRUCK T. A 128×128 120 dB 15 μs latency asynchronous tem-poral contrast vision sensor[J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 566-576. |
188 | POSCH C, MATOLIN D, WOHLGENANNT R. A QVGA 143dB dynamic range asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression[C]∥ 2010 IEEE International Solid-State Circuits Conference - (ISSCC). Piscataway: IEEE Press, 2010: 400-401. |
189 | BRANDLI C, MULLER L, DELBRUCK T. Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor[C]∥ 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2014: 686-689. |
190 | CHEN S, GUO M. Live Demonstration: CeleX-V: A 1M pixel multi-mode event-based sensor[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2020: 1682-1683. |
191 | DONG S W, HUANG T J, TIAN Y H. Spike camera and its coding methods[C]∥ 2017 Data Compression Conference (DCC). Piscataway: IEEE Press, 2017: 437. |
192 | STEFFEN L, REICHARD D, WEINLAND J, et al. Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms[J]. Frontiers in Neu-rorobotics, 2019, 13: 28. |
193 | MUEGGLER E, HUBER B, SCARAMUZZA D. Event-based, 6-DOF pose tracking for high-speed maneuvers[C]∥ 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 2761-2768. |
194 | 李家宁, 田永鸿. 神经形态视觉传感器的研究进展及应用综述[J]. 计算机学报, 2021, 44(6): 1258-1286. |
LI J N, TIAN Y H. Recent advances in neuromor-phic vision sensors: A survey[J]. Chinese Journal of Computers, 2021, 44(6): 1258-1286 (in Chinese). | |
195 | WU W C, SCHENATO L, WOOD R J, et al. Biomimetic sensor suite for flight control of a micromechanical flying insect: Design and experimental results[C]∥ 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). Piscataway: IEEE Press, 2003: 1146-1151. |
196 | 邓磊. 异构融合类脑计算平台的计算模型与关键技术研究[D]. 北京: 清华大学, 2017: 2-18. |
DENG L. Towards the computational model and key technologies on heterogeneous brain-inspired com-puting platform[D]. Beijing: Tsinghua University, 2017: 2-18 (in Chinese). | |
197 | HAN S, LIU X Y, MAO H Z, et al. EIE: efficient inference engine on compressed deep neural network[C]∥ 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). Piscataway: IEEE Press, 2016: 243-254. |
198 | BENJAMIN B V, GAO P R, MCQUINN E, et al. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations[J]. Proceedings of the IEEE, 2014, 102(5): 699-716. |
199 | SCHEMMEL J, BRüDERLE D, GRüBL A, et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling[C]∥ 2010 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2010: 1947-1950. |
200 | FURBER S B, GALLUPPI F, TEMPLE S, et al. The SpiNNaker Project[J]. Proceedings of the IEEE, 2014, 102(5): 652-665. |
201 | AKOPYAN F, SAWADA J, CASSIDY A, et al. TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10): 1537-1557. |
202 | DAVIES M, SRINIVASA N, LIN T H, et al. Loihi: A neuromorphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38(1): 82-99. |
203 | Spiking neural network integrated circuits: A review of trends and future directions[C]∥ 2022 IEEE Custom Integrated Circuits Conference (CICC). Piscataway: IEEE Press, 2022: 1-8. |
204 | HWU T, ISBELL J, OROS N, et al. A self-driving robot using deep convolutional neural networks on neuromorphic hardware[C]∥ 2017 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2017: 635-641. |
205 | ALLISON S L, FAGAN A M, MORRIS J C, et al. Spatial navigation in preclinical Alzheimer’s dis-ease[J]. Journal of Alzheimer’s Disease: JAD, 2016, 52(1): 77-90. |
206 | SENDHOFF B. Creating brain-like intelligence: From basic principles to complex intelligent systems[M]. Berlin: Springer, 2009. |
207 | SMITH L, GASSER M. The development of em-bodied cognition: Six lessons from babies[J]. Artifi-cial Life, 2005, 11(1-2): 13-29. |
208 | 文超, 马涛, 王偲, 等. 昆虫复眼结构及视觉导航研究进展[J]. 应用昆虫学报, 2019, 56(1): 28-36. |
WEN C, MA T, WANG C, et al. Progress in research on the compound eye structure and visual navigation of insects[J]. Chinese Journal of Applied Entomology, 2019, 56(1): 28-36 (in Chinese). | |
209 | 吴军, 王玲容, 黄明益, 等. 多几何约束下的鱼眼相机单像高精度标定[J]. 光学学报, 2018, 38(11): 199-210. |
WU J, WANG L R, HUANG M Y, et al. High preci-sion calibration of fisheye camera with single image under multiple geometric constraints[J]. Acta Optica Sinica, 2018, 38(11): 199-210 (in Chinese). |
/
〈 |
|
〉 |