ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Multiple constrained analytical capture region for hypersonic maneuvering target interception
Received date: 2022-12-27
Revised date: 2023-02-16
Accepted date: 2023-04-06
Online published: 2023-04-11
Supported by
National Natural Science Foundation of China(12072090)
To fast evaluate the reasonable situation of terminal phase of long-range interception, the analytical capture region for intercepting arbitrary bounded maneuvering hypersonic target with constraints of field of view and acceleration saturation is investigated. To fit the above target interception scenario, the terminal guidance law with asymptotic convergence and disturbance rejection is firstly introduced to develop the capture region. By constructing a composite Lyapunov function and employing the nonlinear programming technique for inequalities analysis, the multiple constrained capture region is finally derived, which is constituted by the modified capture conditions with respect to the initial closing speed, initial transversal relative speed and initial heading angle of interceptor. The allowable range of guidance gain is also obtained. It is theoretically proved that when the gain is set within the applicable range, the interceptor can effectively intercept arbitrary bounded maneuvering target under arbitrary initial conditions given in the proposed capture region, as well as satisfy the field of view constraint and the maximum acceleration limitation throughout the whole process. Meanwhile, it can be guaranteed that the terminal miss distance is less than the allowable threshold value, and the closing speed is less than the allowable impact speed. Comparative simulations validate the validity of proposed conclusions and reveal the influencing factors of capture region, which can provide a reference for increasing the controllable margin of initial encountering formation.
Yiting TAN , Wuxing JING , Changsheng GAO , Ruoming AN . Multiple constrained analytical capture region for hypersonic maneuvering target interception[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(22) : 328436 -328436 . DOI: 10.7527/S1000-6893.2023.28436
1 | 王鹏飞, 罗畅, 白炎. 临近空间高超声速飞行器进展及防御策略分析[J]. 现代防御技术, 2021, 49(6): 22-27, 48. |
WANG P F, LUO C, BAI Y. Development of near space hypersonic vehicles and defense strategies analysis[J]. Modern Defence Technology, 2021, 49(6): 22-27, 48 (in Chinese). | |
2 | 谭一廷, 荆武兴, 高长生. 考虑零控交班视窗角约束的拦截中制导设计[J]. 宇航学报, 2021, 42(10): 1257-1270. |
TAN Y T, JING W X, GAO C S. Design of interception midcourse guidance with zero effort handover visual angle constraint[J]. Journal of Astronautics, 2021, 42(10): 1257-1270 (in Chinese). | |
3 | TAN Y T, JING W X, GAO C S, et al. Adaptive improved super-twisting integral sliding mode guidance law against maneuvering target with terminal angle constraint[J]. Aerospace Science and Technology, 2022, 129: 107820. |
4 | DHANANJAY N, GHOSE D, BHAT M S. Capturability of a geometric guidance law in relative velocity space[J]. IEEE Transactions on Control Systems Technology, 2009, 17(1): 111-122. |
5 | 王华吉, 雷虎民, 张大元, 等. 反临近空间高超声速目标拦截弹中末制导交接班窗口[J]. 国防科技大学学报, 2018, 40(5): 1-8. |
WANG H J, LEI H M, ZHANG D Y, et al. Midcourse and terminal guidance handover window for interceptor against near space hypersonic target[J]. Journal of National University of Defense Technology, 2018, 40(5): 1-8 (in Chinese). | |
6 | GHOSE D. Capture region for true proportional navigation guidance with nonzero miss-distance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3): 627-628. |
7 | 王婷, 周军. 三维理想比例导引律的捕获区域分析[J]. 西北工业大学学报, 2007, 25(1): 83-86. |
WANG T, ZHOU J. Is capture region of 3D ideal proportional navigation (IPN) also the biggest?[J]. Journal of Northwestern Polytechnical University, 2007, 25(1): 83-86 (in Chinese). | |
8 | 周觐, 雷虎民, 侯峰, 等. 拦截高速目标的比例与反比例导引捕获区分析[J]. 宇航学报, 2018, 39(9): 1003-1012. |
ZHOU J, LEI H M, HOU F, et al. Capture region analysis of proportional navigation and retro-proportional navigation guidance for hypersonic target interception[J]. Journal of Astronautics, 2018, 39(9): 1003-1012 (in Chinese). | |
9 | WANG H J, LEI H M, YE J K, et al. A novel capture region of retro proportional navigation guidance law for intercepting high-speed nonmaneuvering targets[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(6): 1186-1198. |
10 | ZHOU J, SHAO L, WANG H J, et al. Optimal midcourse trajectory planning considering the capture region[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 587-600. |
11 | LI C Y, JING W X. Geometric approach to capture analysis of PN guidance law[J]. Aerospace Science and Technology, 2008, 12(2): 177-183. |
12 | LI K B, CHEN L, BAI X Z. Differential geometric modeling of guidance problem for interceptors[J]. Science China Technological Sciences, 2011, 54(9): 2283-2295. |
13 | LIU L J, SHEN Y. Three-dimension H∞ guidance law and capture region analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 419-429. |
14 | FENG T. Analysis of 3D PPN guidance laws for nonmaneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2932-2943. |
15 | FENG T. Capture region of a GIPN guidance law for missile and target with bounded maneuverability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 201-213. |
16 | FENG T. Analysis of general ideal proportional navigation guidance laws[J]. Asian Journal of Control, 2016, 18(3): 899-919. |
17 | LI K B, SU W S, CHEN L. Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach[J]. Aerospace Science and Technology, 2017, 69: 333-341. |
18 | LI K B, SU W S, CHEN L. Performance analysis of three-dimensional differential geometric guidance law against low-speed maneuvering targets[J]. Astrodynamics, 2018, 2(3): 233-247. |
19 | LI K B, LIANG Y G, SU W S, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception[J]. Science China Technological Sciences, 2018, 61(8): 1161-1174. |
20 | 白志会, 黎克波, 苏文山, 等. 现实真比例导引拦截任意机动目标捕获区域[J]. 航空学报, 2020, 41(8): 323947. |
BAI Z H, LI K B, SU W S, et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323947 (in Chinese). | |
21 | LI K B, BAI Z H, SHIN H S, et al. Capturability of 3D RTPN guidance law against true-arbitrarily maneuvering target with maneuverability limitation[J]. Chinese Journal of Aeronautics, 2022, 35(7): 75-90. |
22 | 于大腾, 王华, 李林森, 等. 能量约束下的动能拦截弹逆轨拦截攻击区建模[J]. 宇航学报, 2017, 38(7): 704-713. |
YU D T, WANG H, LI L S, et al. Attack area modeling of kinetic kill vehicle head-on interception with energy constraint[J]. Journal of Astronautics, 2017, 38(7): 704-713 (in Chinese). | |
23 | 梁子璇, 郭栋, 朱圣英, 等. 高超声速目标拦截末段交战窗口快速生成方法[J]. 宇航学报, 2021, 42(3): 333-343. |
LIANG Z X, GUO D, ZHU S Y, et al. Rapid generation of terminal engagement window for interception of hypersonic targets[J]. Journal of Astronautics, 2021, 42(3): 333-343 (in Chinese). | |
24 | 李万礼, 李炯, 雷虎民, 等. 基于滑模变结构制导律的捕获区分析[J]. 系统工程与电子技术, 2021, 43(11): 3321-3329. |
LI W L, LI J, LEI H M, et al. Analysis of capture region based on sliding mode variable structure guidance law[J]. Systems Engineering and Electronics, 2021, 43(11): 3321-3329 (in Chinese). | |
25 | 毛柏源, 李君龙, 张锐, 等. 拦截高速机动目标的捕获区及微分对策导引律[J]. 国防科技大学学报, 2021, 43(3): 165-174. |
MAO B Y, LI J L, ZHANG R, et al. Capture zones and differential game guidance law for high-speed maneuvering target interception[J]. Journal of National University of Defense Technology, 2021, 43(3): 165-174 (in Chinese). | |
26 | YANG Z, WANG H, LIN D F. Time-varying biased proportional guidance with seeker’s field-of-view limit[J]. International Journal of Aerospace Engineering, 2016, 2016: 1-11. |
27 | 杨胜江, 温求遒, 周冠群, 等. 考虑捷联导引头最小视场角约束的制导策略[J]. 航空学报, 2020, 41(S2): 724449. |
YANG S J, WEN Q Q, ZHOU G Q, et al. Guidance strategy considering strapdown seeker minimum field-of-view angle constraint[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724449 (in Chinese). | |
28 | HE S M, LIN D F. Three-dimensional optimal impact time guidance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(4): 941-948. |
29 | DUVVURU R, MAITY A, UMAKANT J. Three-dimensional field of view and impact angle constrained guidance with terminal speed maximization[J]. Aerospace Science and Technology, 2022, 126: 107552. |
30 | HAN T, HU Q L, XIN M. Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis[J]. Aerospace Science and Technology, 2020, 97: 105586. |
31 | YANG X Y, ZHANG Y C, SONG S M. Three-dimensional nonsingular impact angle guidance strategy with physical constraints[J]. ISA Transactions, 2022, 131: 476-488. |
32 | 周藜莎. 高超声速目标拦截交会条件分析[D]. 哈尔滨: 哈尔滨工业大学, 2016: 48-60. |
ZHOU L S. Analysis of encounter conditions for intercepting A hypersonic target[D]. Harbin: Harbin Institute of Technology, 2016: 48-60 (in Chinese). | |
33 | 梁壮. 高超声速目标拦截中的中末交班条件分析与设计[D]. 哈尔滨: 哈尔滨工业大学, 2017: 45-60. |
LIANG Z. Analysis on intersection conditions of interruptting a hypersonic vehicle[D]. Harbin: Harbin Institute of Technology, 2017: 45-60 (in Chinese). | |
34 | 胡东愿, 杨任农, 闫孟达, 等. 基于自编码网络的导弹攻击区实时计算方法[J]. 航空学报, 2020, 41(4): 323571. |
HU D Y, YANG R N, YAN M D, et al. Real-time calculation of missile launch envelope based on auto-encoder network[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 323571 (in Chinese). | |
35 | 闫孟达, 杨任农, 左家亮, 等. 基于深度学习的空空导弹多类攻击区实时解算[J]. 兵工学报, 2020, 41(12): 2466-2477. |
YAN M D, YANG R N, ZUO J L, et al. Real-time computing of air-to-air missile multiple capture zones based on deep learning[J]. Acta Armamentarii, 2020, 41(12): 2466-2477 (in Chinese). |
/
〈 |
|
〉 |