Electronics and Electrical Engineering and Control

Multiple constrained analytical capture region for hypersonic maneuvering target interception

  • Yiting TAN ,
  • Wuxing JING ,
  • Changsheng GAO ,
  • Ruoming AN
Expand
  • Department of Aerospace Engineering,Harbin Institute of Technology,Harbin  150001,China
E-mail: tyt_hit@163.com

Received date: 2022-12-27

  Revised date: 2023-02-16

  Accepted date: 2023-04-06

  Online published: 2023-04-11

Supported by

National Natural Science Foundation of China(12072090)

Abstract

To fast evaluate the reasonable situation of terminal phase of long-range interception, the analytical capture region for intercepting arbitrary bounded maneuvering hypersonic target with constraints of field of view and acceleration saturation is investigated. To fit the above target interception scenario, the terminal guidance law with asymptotic convergence and disturbance rejection is firstly introduced to develop the capture region. By constructing a composite Lyapunov function and employing the nonlinear programming technique for inequalities analysis, the multiple constrained capture region is finally derived, which is constituted by the modified capture conditions with respect to the initial closing speed, initial transversal relative speed and initial heading angle of interceptor. The allowable range of guidance gain is also obtained. It is theoretically proved that when the gain is set within the applicable range, the interceptor can effectively intercept arbitrary bounded maneuvering target under arbitrary initial conditions given in the proposed capture region, as well as satisfy the field of view constraint and the maximum acceleration limitation throughout the whole process. Meanwhile, it can be guaranteed that the terminal miss distance is less than the allowable threshold value, and the closing speed is less than the allowable impact speed. Comparative simulations validate the validity of proposed conclusions and reveal the influencing factors of capture region, which can provide a reference for increasing the controllable margin of initial encountering formation.

Cite this article

Yiting TAN , Wuxing JING , Changsheng GAO , Ruoming AN . Multiple constrained analytical capture region for hypersonic maneuvering target interception[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(22) : 328436 -328436 . DOI: 10.7527/S1000-6893.2023.28436

References

1 王鹏飞, 罗畅, 白炎. 临近空间高超声速飞行器进展及防御策略分析[J]. 现代防御技术202149(6): 22-27, 48.
  WANG P F, LUO C, BAI Y. Development of near space hypersonic vehicles and defense strategies analysis[J]. Modern Defence Technology202149(6): 22-27, 48 (in Chinese).
2 谭一廷, 荆武兴, 高长生. 考虑零控交班视窗角约束的拦截中制导设计[J]. 宇航学报202142(10): 1257-1270.
  TAN Y T, JING W X, GAO C S. Design of interception midcourse guidance with zero effort handover visual angle constraint[J]. Journal of Astronautics202142(10): 1257-1270 (in Chinese).
3 TAN Y T, JING W X, GAO C S, et al. Adaptive improved super-twisting integral sliding mode guidance law against maneuvering target with terminal angle constraint[J]. Aerospace Science and Technology2022129: 107820.
4 DHANANJAY N, GHOSE D, BHAT M S. Capturability of a geometric guidance law in relative velocity space[J]. IEEE Transactions on Control Systems Technology200917(1): 111-122.
5 王华吉, 雷虎民, 张大元, 等. 反临近空间高超声速目标拦截弹中末制导交接班窗口[J]. 国防科技大学学报201840(5): 1-8.
  WANG H J, LEI H M, ZHANG D Y, et al. Midcourse and terminal guidance handover window for interceptor against near space hypersonic target[J]. Journal of National University of Defense Technology201840(5): 1-8 (in Chinese).
6 GHOSE D. Capture region for true proportional navigation guidance with nonzero miss-distance[J]. Journal of Guidance, Control, and Dynamics199417(3): 627-628.
7 王婷, 周军. 三维理想比例导引律的捕获区域分析[J]. 西北工业大学学报200725(1): 83-86.
  WANG T, ZHOU J. Is capture region of 3D ideal proportional navigation (IPN) also the biggest?[J]. Journal of Northwestern Polytechnical University200725(1): 83-86 (in Chinese).
8 周觐, 雷虎民, 侯峰, 等. 拦截高速目标的比例与反比例导引捕获区分析[J]. 宇航学报201839(9): 1003-1012.
  ZHOU J, LEI H M, HOU F, et al. Capture region analysis of proportional navigation and retro-proportional navigation guidance for hypersonic target interception[J]. Journal of Astronautics201839(9): 1003-1012 (in Chinese).
9 WANG H J, LEI H M, YE J K, et al. A novel capture region of retro proportional navigation guidance law for intercepting high-speed nonmaneuvering targets[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2018232(6): 1186-1198.
10 ZHOU J, SHAO L, WANG H J, et al. Optimal midcourse trajectory planning considering the capture region[J]. Journal of Systems Engineering and Electronics201829(3): 587-600.
11 LI C Y, JING W X. Geometric approach to capture analysis of PN guidance law[J]. Aerospace Science and Technology200812(2): 177-183.
12 LI K B, CHEN L, BAI X Z. Differential geometric modeling of guidance problem for interceptors[J]. Science China Technological Sciences201154(9): 2283-2295.
13 LIU L J, SHEN Y. Three-dimension H guidance law and capture region analysis[J]. IEEE Transactions on Aerospace and Electronic Systems201248(1): 419-429.
14 FENG T. Analysis of 3D PPN guidance laws for nonmaneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems201551(4): 2932-2943.
15 FENG T. Capture region of a GIPN guidance law for missile and target with bounded maneuverability[J]. IEEE Transactions on Aerospace and Electronic Systems201147(1): 201-213.
16 FENG T. Analysis of general ideal proportional navigation guidance laws[J]. Asian Journal of Control201618(3): 899-919.
17 LI K B, SU W S, CHEN L. Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach[J]. Aerospace Science and Technology201769: 333-341.
18 LI K B, SU W S, CHEN L. Performance analysis of three-dimensional differential geometric guidance law against low-speed maneuvering targets[J]. Astrodynamics20182(3): 233-247.
19 LI K B, LIANG Y G, SU W S, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception[J]. Science China Technological Sciences201861(8): 1161-1174.
20 白志会, 黎克波, 苏文山, 等. 现实真比例导引拦截任意机动目标捕获区域[J]. 航空学报202041(8): 323947.
  BAI Z H, LI K B, SU W S, et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica202041(8): 323947 (in Chinese).
21 LI K B, BAI Z H, SHIN H S, et al. Capturability of 3D RTPN guidance law against true-arbitrarily maneuvering target with maneuverability limitation[J]. Chinese Journal of Aeronautics202235(7): 75-90.
22 于大腾, 王华, 李林森, 等. 能量约束下的动能拦截弹逆轨拦截攻击区建模[J]. 宇航学报201738(7): 704-713.
  YU D T, WANG H, LI L S, et al. Attack area modeling of kinetic kill vehicle head-on interception with energy constraint[J]. Journal of Astronautics201738(7): 704-713 (in Chinese).
23 梁子璇, 郭栋, 朱圣英, 等. 高超声速目标拦截末段交战窗口快速生成方法[J]. 宇航学报202142(3): 333-343.
  LIANG Z X, GUO D, ZHU S Y, et al. Rapid generation of terminal engagement window for interception of hypersonic targets[J]. Journal of Astronautics202142(3): 333-343 (in Chinese).
24 李万礼, 李炯, 雷虎民, 等. 基于滑模变结构制导律的捕获区分析[J]. 系统工程与电子技术202143(11): 3321-3329.
  LI W L, LI J, LEI H M, et al. Analysis of capture region based on sliding mode variable structure guidance law[J]. Systems Engineering and Electronics202143(11): 3321-3329 (in Chinese).
25 毛柏源, 李君龙, 张锐, 等. 拦截高速机动目标的捕获区及微分对策导引律[J]. 国防科技大学学报202143(3): 165-174.
  MAO B Y, LI J L, ZHANG R, et al. Capture zones and differential game guidance law for high-speed maneuvering target interception[J]. Journal of National University of Defense Technology202143(3): 165-174 (in Chinese).
26 YANG Z, WANG H, LIN D F. Time-varying biased proportional guidance with seeker’s field-of-view limit[J]. International Journal of Aerospace Engineering20162016: 1-11.
27 杨胜江, 温求遒, 周冠群, 等. 考虑捷联导引头最小视场角约束的制导策略[J]. 航空学报202041(S2): 724449.
  YANG S J, WEN Q Q, ZHOU G Q, et al. Guidance strategy considering strapdown seeker minimum field-of-view angle constraint[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724449 (in Chinese).
28 HE S M, LIN D F. Three-dimensional optimal impact time guidance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics201842(4): 941-948.
29 DUVVURU R, MAITY A, UMAKANT J. Three-dimensional field of view and impact angle constrained guidance with terminal speed maximization[J]. Aerospace Science and Technology2022126: 107552.
30 HAN T, HU Q L, XIN M. Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis[J]. Aerospace Science and Technology202097: 105586.
31 YANG X Y, ZHANG Y C, SONG S M. Three-dimensional nonsingular impact angle guidance strategy with physical constraints[J]. ISA Transactions2022131: 476-488.
32 周藜莎. 高超声速目标拦截交会条件分析[D]. 哈尔滨: 哈尔滨工业大学, 2016: 48-60.
  ZHOU L S. Analysis of encounter conditions for intercepting A hypersonic target[D]. Harbin: Harbin Institute of Technology, 2016: 48-60 (in Chinese).
33 梁壮. 高超声速目标拦截中的中末交班条件分析与设计[D]. 哈尔滨: 哈尔滨工业大学, 2017: 45-60.
  LIANG Z. Analysis on intersection conditions of interruptting a hypersonic vehicle[D]. Harbin: Harbin Institute of Technology, 2017: 45-60 (in Chinese).
34 胡东愿, 杨任农, 闫孟达, 等. 基于自编码网络的导弹攻击区实时计算方法[J]. 航空学报202041(4): 323571.
  HU D Y, YANG R N, YAN M D, et al. Real-time calculation of missile launch envelope based on auto-encoder network[J]. Acta Aeronautica et Astronautica Sinica202041(4): 323571 (in Chinese).
35 闫孟达, 杨任农, 左家亮, 等. 基于深度学习的空空导弹多类攻击区实时解算[J]. 兵工学报202041(12): 2466-2477.
  YAN M D, YANG R N, ZUO J L, et al. Real-time computing of air-to-air missile multiple capture zones based on deep learning[J]. Acta Armamentarii202041(12): 2466-2477 (in Chinese).
Outlines

/