ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Microcrack healing mechanism and microstructure properties of SiC/Al composites modified by high frequency pulse current
Received date: 2023-02-22
Revised date: 2023-03-20
Accepted date: 2023-03-27
Online published: 2023-04-07
Supported by
National Natural Science Foundation of China(52205405);Fundamental Research Program of Shanxi Province(20210302124653);Taiyuan University of Technology School Foundation(2022QN151);Science and Technology Innovation Program of Higher Education Institutions in Shanxi Province(2021L068)
High-frequency pulsed current technique was employed to modify the microstructure and performance of as-rolled SiC/Al composites. The microstructure of the composites in different states was observed and analyzed by Scanning Elcetron Microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD). The dynamic healing mechanism of microcrack under high frequency pulse current was investigated. Finally, the micro-nano mechanical properties and tensile properties of the composites were tested. Results show that the high frequency pulse current can effectively promote the static recrystallization of the as-rolled composite.Grain size was refined from 2.47 μm to 2.02 μm, and recrystallization ratio increased from 7.34% to 39.73%, which results in the weakening of the preference orientation. Micro-crack tips prefabricated by the drilling and cold rolling method were partially healed under the action of high temperature and pressure stress induced by high frequency pulse current. Tensile strength and elongation of the as-rolled composites were optimized from 347 MPa and 12.23% to 475 MPa and 21.65% after high frequency pulse current treatment. This research laid the theoretical and practical foundation for the expansion of SiC/Al composites in aviation field.
Ruifeng LIU , Xiaozhe SUN , Wenhui LI , Xian WANG , Jie YAN . Microcrack healing mechanism and microstructure properties of SiC/Al composites modified by high frequency pulse current[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(22) : 428598 -428598 . DOI: 10.7527/S1000-6893.2023.28598
1 | 崔岩, 史文方. SiCp/Al复合材料界面控制与评价新方法[J]. 航空学报, 2000, 21(6): 571-574. |
CUI Y, SHI W F. New method to control and evaluate the interface of SiCp/Al composites[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(6): 571-574 (in Chinese). | |
2 | 詹美燕, 傅定发, 吴有伍, 等. SiC颗粒尺寸对喷射共沉积7075 Al/SiCp挤压及轧制的组织和性能的影响[J]. 精密成形工程, 2004, 22(1): 49-53. |
ZHAN M Y, FU D F, WU Y W, et al. The effects of particle sizes on microstructure and mechanical properties of Co-sprayed 7075Al/SiCp/15 mass% composite[J]. Metal Forming Technology, 2004, 22(1): 49-53 (in Chinese). | |
3 | 聂俊辉, 樊建中, 魏少华, 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用[J]. 航空制造技术, 2017, 60(16):26-36. |
NIE J H, FAN J Z, WEI S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation[J]. Aeronautical Manufacturing Technology, 2017, 60(16): 26-36 (in Chinese). | |
4 | MHASKE M S, SHIRSAT U M. An investigation of mechanical properties of aluminium based silicon carbide (AlSiC) metal matrix composite by different manufacturing methods[J]. Materials Today: Proceedings, 2021, 44: 376-382. |
5 | REDDY B R, SRINIVAS C. Fabrication and characterization of silicon carbide and fly ash reinforced aluminium metal matrix hybrid composites[J]. Materials Today: Proceedings, 2018, 5(2): 8374-8381. |
6 | 周艳华. 碳化硅颗粒增强铝基复合材料主要制备技术[J]. 工具技术, 2017, 51(4):7-10. |
ZHOU Y H. Main preparation processes and research status of SiC particle reinforced aluminum matrix composites[J]. Tool Engineering, 2017, 51(4): 7-10 (in Chinese). | |
7 | 林师朋, 刘金炎, 纪艳丽. 铝基复合材料的增强体研究及发展现状[J]. 有色金属加工, 2016, 45(6): 6-11. |
LIN S P, LIU J Y, JI Y L. Study and development of reinforcement in aluminum matrix composites[J]. Nonferrous Metals Processing, 2016, 45(6): 6-11 (in Chinese). | |
8 | JIANG X D, XIAO D H, TENG X Y. Influence of vibration parameters on ultrasonic vibration cutting micro-particles reinforced SiC/Al metal matrix composites[J].The International Journal of Advanced Manufacturing Technology, 2022, 119(9-10): 6057-6071. |
9 | 胡代忠, 陈礼清, 赵明久, 等. SiC颗粒增强铝基复合材料薄板的力学性能[J]. 中国有色金属学报, 2000, 10(6):827-831. |
HU D Z, CHEN L Q, ZHAO M J, et al. Mechanical properties of SiC particle reinforced aluminum matrix composite sheet[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 827-831 (in Chinese). | |
10 | 毕敬, 肖伯律, 马宗义. SiCp/2024铝基复合材料的超塑性变形行为研究[J]. 金属学报, 2002, 38(6): 621-624. |
BI J, XIAO B L, MA Z Y. High strain rate superplastic deformation behavior of powder-metallurgy processed 17% SiCp/2024 Al composite[J]. Acta Metallurgica Sinica, 2002, 38(6): 621-624 (in Chinese). | |
11 | MAJI P, NATH R K, KARMAKAR R, et al. Effect of post processing heat treatment on friction stir welded/processed aluminum based alloys and composites[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 96-105. |
12 | MOHAMADIGANGARAJ J, NOUROUZI S, JAMSHIDI AVAL H. The effect of heat treatment and cooling conditions on friction stir processing of A390-10wt% SiC aluminium matrix composite[J]. Materials Chemistry and Physics, 2021, 263: 124423. |
13 | WANG B, HUANG L J, GENG L, et al. Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites[J]. Materials and Design, 2015, 85: 679-686. |
14 | ZHANG W, ZHAO W S, LI D X, et al. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved byan electric-current-pulse treatment[J]. International Journal of Materials Research, 2006, 97(8): 1143-1151. |
15 | XIE L C, WU Y Y, YAO Y P, et al. Refinement of TiB reinforcements in TiB/Ti-2Al-6Sn titanium matrix composite via electroshock treatment[J]. Materials Characterization, 2021, 180: 111395. |
16 | XIE L C, LIU C, SONG Y L, et al. Evaluation of microstructure variation of TC11 alloy after electroshocking treatment[J]. Journal of Materials Research and Technology, 2020, 9(2): 2455-2466. |
17 | 刘斌, 高一迪, 谭志勇, 等. 二维叠层C/SiC复合材料低能量冲击损伤实验[J]. 航空学报, 2021, 42(2): 110-120. |
LIU B, GAO Y D, TAN Z Y, et al. Low energy level impact damage on 2D C/SiC composites: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 110-120 (in Chinese). | |
18 | WEI S P, WANG G, DENG D W, et al. Microstructure characterization and thermal behavior around crack tip under electropulsing[J].Applied Physics:A, 2015, 121(1): 69-76. |
19 | RUDOLF C, GOSWAMI R, KANG W, et al. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium[J]. Acta Materialia, 2021, 209: 116776. |
20 | JEONG K, JIN S W, KANG S G, et al. Athermally enhanced recrystallization kinetics of ultra-low carbon steel via electric current treatment[J]. Acta Materialia, 2022, 232: 117925. |
21 | MILOSLAV K, MARTIN T, ALES R. Skin-effect in conductor of rectangular cross-section—Approximate solution[J]. Przeglad Elektrotechniczny, 2012, 88(7): 23-25. |
22 | LIU L P, ZHAO Z J, ZHANG J C, et al. Giant magneto-impedance and skin effect in CuBe/CoNiP composite wires[J]. Journal of Magnetism and Magnetic Materials, 2006, 305(1): 212-215. |
23 | WANG Z J, SONG H, CAI S P, DUAN J, REN X W. Research advancements on self-healing of cracks and evolution of microstructures of titanium alloy sheets induced by electropulsing[J]. Journal of Plasticity Engineering, 2019, 26(2): 1-14. |
24 | ZHOU Y Z, GUO J D, GAO M, et al. Crack healing in a steel by using electropulsing technique[J]. Materials Letters, 2004, 58(11): 1732-1736. |
25 | QIN R S, SU S X. Thermodynamics of crack healing under electropulsing[J].Journal of Materials Research, 2002, 17(8): 2048-2052. |
26 | SONG H, WANG Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science and Engineering: A, 2008, 490(1-2): 1-6. |
27 | 易卓勋, 赖小明, 王博, 等. 高密度脉冲电流对SiCp/Al板材裂纹的修复作用[J]. 航空学报, 2017, 38(11): 206-213. |
YI Z X, LAI X M, WANG B, et al. Effect of high density pulse current on healing of cracks of SiCp/Al composites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 206-213 (in Chinese). | |
28 | 王博. 脉冲电流对铝基复合材料拉深变形与扩散连接的影响[D]. 哈尔滨: 哈尔滨工业大学, 2013: 68-70. |
WANG B. Effect of pulse current on drawing deformation and diffusion bonding of aluminum matrix composites[D]. Harbin: Harbin Institute of Technology, 2013: 68-70 (in Chinese). | |
29 | MECKLENBURG M, ZUTTER B T, LING X Y, et al. Visualizing the electron wind force in the elastic regime[J]. Nano Letters, 2021, 21(24): 10172-10177. |
30 | LI X, ZHU Q, HONG Y R, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force[J]. Nature Communications, 2022, 13(1): 1-9. |
31 | 邹磊, 武颖, 岑启宏. 电脉冲处理对W6Mo5Cr4V2高速钢的影响[J]. 材料工程, 2016, 44(2): 23-27. |
ZOU L, WU Y, CEN Q H. Influence of electric current pulse treatment on W6Mo5Cr4V2 high speed steel[J]. Journal of Materials Engineering, 2016, 44(2):23-27 (in Chinese). | |
32 | LIU R F, WANG W X, CHEN H S, et al. Comparative study of recrystallization behaviour and nanoindentation properties of micro-/ nano-bimodal size B4C particle-reinforced aluminium matrix composites under T6 and electropulsing treatment[J]. Journal of Alloys and Compounds, 2019, 788: 1056-1065. |
/
〈 |
|
〉 |