Solid Mechanics and Vehicle Conceptual Design

Thermal⁃structure coupling characteristics of flexible envelopes for stratospheric airships at float conditions

  • Zhenyu MA ,
  • Xiaolong DENG ,
  • Xixiang YANG ,
  • Bingjie ZHU
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2022-11-30

  Revised date: 2023-02-14

  Accepted date: 2023-04-07

  Online published: 2023-04-07

Supported by

National Natural Science Foundation of China(51605484);National Science and Technology Major Project(GFZX040201)

Abstract

A three-dimensional transient thermal model for stratospheric airships during floating is developed, considering the effects of solar radiation, infrared radiation, internal and external convective heat transfer, and solar array heat transfer. The finite element model of the envelope structure for stratospheric airships is established, taking into account the characteristics of thin-film wrinkles and inflation status. Based on the model validations, the computational method of thermal-structure coupling is proposed according to the partitioned coupling strategy. The thermal-structure coupling characteristics of stratospheric airships at float conditions during day and night are simulated and analyzed to obtain the distributions of temperature, deformation and stress of envelopes and their temporal variation rules. The computational results show that solar radiation and solar array heat transfer characteristics have significant effects on the temperature distribution, deformation, and stress of envelopes. Under design conditions, the maximum temperature difference reaches 60 K at the layout boundary of the solar array, the maximum radial displacement at the top of envelopes during daytime reaches 1.5 m, and the maximum axial stress and the maximum circumferential stress at the layout boundary of the solar array are approximately 82 MPa and 140 MPa, respectively. There are obvious wrinkle deformations in the middle of envelopes with the wrinkle amplitude reaching 1.1 m below the horizontal symmetry plane at night under lower differential pressure conditions, which has important impacts on the structural performance of envelopes for stratospheric airships.

Cite this article

Zhenyu MA , Xiaolong DENG , Xixiang YANG , Bingjie ZHU . Thermal⁃structure coupling characteristics of flexible envelopes for stratospheric airships at float conditions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 228337 -228337 . DOI: 10.7527/S1000-6893.2023.28337

References

1 DAI Q M, FANG X D. A simple model to predict solar radiation under clear sky conditions[J]. Advances in Space Research201453(8): 1239-1245.
2 戴秋敏. 浮空器热环境与热特性研究[D]. 南京: 南京航空航天大学, 2014.
  DAI Q M. Research on the thermal environment and thermal characteristics for aerostats[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
3 张衍垒, 李兆杰, 王旭巍, 等. 平流层飞艇表面太阳辐射量分布的分析研究[J]. 太阳能学报202041(12): 110-116.
  ZHANG Y L, LI Z J, WANG X W, et al. Study on distribution of solar radiation distribution on stratospheric airship surface[J]. Acta Energiae Solaris Sinica202041(12): 110-116 (in Chinese).
4 张敏. 平流层飞艇温度及红外辐射特性研究[D]. 南京: 南京理工大学, 2016.
  ZHANG M. Temperature and infrared radiation characteristics of approaching spacecrafts[D]. Nanjing: Nanjing University of Science and Technology, 2016 (in Chinese).
5 ZHENG W, ZHANG X Y, MA R, et al. A simplified thermal model and comparison analysis for a stratospheric lighter-than-air vehicle[J]. Journal of Heat Transfer2018140(2): 022801.
6 李敏, 宁辉, 孟小君, 等. 戈壁地区浮空器的辐射热环境模型[J]. 现代应用物理201910(1): 83-86.
  LI M, NING H, MENG X J, et al. Radiation thermal environment models for aerostats in the Gobi area[J]. Modern Applied Physics201910(1): 83-86 (in Chinese).
7 DAI Q M, FANG X D, XU Y. Numerical study of forced convective heat transfer around a spherical aerostat[J]. Advances in Space Research201352(12): 2199-2203.
8 钱晓辉. 近空间飞艇热特性与环境控制研究[D]. 南京: 南京航空航天大学, 2018.
  QIAN X H. Research on the thermal performance and environment control system for the near-space airship[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
9 裴后举, 蒋彦龙, 施红, 等. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报202071(S1): 136-141.
  PEI H J, JIANG Y L, SHI H, et al. Forced convective heat transfer around spherical aerostat based on M-L transition model[J]. CIESC Journal202071(S1): 136-141 (in Chinese).
10 刘东旭, 樊彦斌, 马云鹏, 等. 氦气渗透对高空长航时浮空器驻空能力影响[J]. 宇航学报201031(11): 2477-2482.
  LIU D X, FAN Y B, MA Y P, et al. Effect of helium permeability on working endurance high altitude long duration LTA vehicle[J]. Journal of Astronautics201031(11): 2477-2482 (in Chinese).
11 WANG Y W, YANG C X. A comprehensive numerical model examining the thermal performance of airships[J]. Advances in Space Research201148(9): 1515-1522.
12 LI D F, XIA X L, SUN C. Experimental investigation of transient thermal behavior of an airship under different solar radiation and airflow conditions[J]. Advances in Space Research201453(5): 862-869.
13 LIU Q, YANG Y C, CUI Y X, et al. Thermal performance of stratospheric airship with photovoltaic array[J]. Advances in Space Research201759(6): 1486-1501.
14 ALAM M I, PANT R S. A multi-node model for transient heat transfer analysis of stratospheric airships[J]. Advances in Space Research201759(12): 3023-3035.
15 XING D M, DAI Q M, LIU C L. Thermal characteristics and output power performances analysis of solar powered stratospheric airships[J]. Applied Thermal Engineering2017123: 770-781.
16 KAYHAN ?. A thermal model to investigate the power output of solar array for stratospheric balloons in real environment[J]. Applied Thermal Engineering2018139: 113-120.
17 程晨. 平流层浮空器瞬态热模型及热特性研究[D]. 上海: 上海交通大学, 2019.
  CHENG C. Transient thermal model and thermal characteristics analysis of stratospheric airships[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
18 耿珊珊. 某型海上气象监测艇热力学性能研究[D]. 镇江: 江苏科技大学, 2020.
  GENG S S. Thermal characteristics of marine meteorological monitoring airship[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020 (in Chinese).
19 方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感200728(2): 5-9.
  FANG X D, WANG W Z, LI X J. A study of thermal simulation of stratospheric airships[J]. Spacecraft Recovery & Remote Sensing200728(2): 5-9 (in Chinese).
20 STEFAN K. Thermal effects on a high altitude airship[C]∥ Proceedings of the 5th Lighter-Than Air Conference. Reston: AIAA, 1983.
21 李德富. 平流层浮空器的热特性及其动力学效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
  LI D F. Thermal behavior and its dynamic effects on stratospheric aerostats[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese).
22 DAI Q M, CAO L, ZHANG G G, et al. Thermal performance analysis of solar array for solar powered stratospheric airship[J]. Applied Thermal Engineering2020171: 115077.
23 LV M Y, YAO Z B, ZHANG L C, et al. Effects of solar array on the thermal performance of stratospheric airship[J]. Applied Thermal Engineering2017124: 22-33.
24 SUN K W, YANG Q Z, YANG Y, et al. Thermal characteristics of multilayer insulation materials for flexible thin-film solar cell array of stratospheric airship[J]. Advances in Materials Science and Engineering20142014: 1-8.
25 DU H F, LI J, ZHU W Y, et al. Thermal performance analysis and comparison of stratospheric airships with rotatable and fixed photovoltaic array[J]. Energy Conversion and Management2018158: 373-386.
26 MENG J H, LIU S Y, YAO Z B, et al. Optimization design of a thermal protection structure for the solar array of stratospheric airships[J]. Renewable Energy2019133: 593-605.
27 LIU Y, DU H F, XU Z Y, et al. Mission-based optimization of insulation layer for the solar array on the stratospheric airship[J]. Renewable Energy2022191: 318-329.
28 SHI H, CHEN J M, GENG S S, et al. Envelope radiation characteristics of stratospheric airship[J]. Advances in Space Research202168(3): 1582-1590.
29 SHI H, CHEN J M, HU L C, et al. Multi-parameter sensitivity analysis on thermal characteristics of stratospheric airship[J]. Case Studies in Thermal Engineering202125: 100902.
30 CHEN W J, ZHANG D X, DUAN D P, et al. Equilibrium configuration analysis of non-rigid airship subjected to weight and buoyancy[C]∥ Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011.
31 汪逸然. 系绳增强充气结构承载性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2013.
  WANG Y R. Bearing capacity analysis of inflatable structures with enhancing tethers[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
32 朱利君. 充气囊体结构变形及应力的数值模拟分析研究[D]. 上海: 上海交通大学, 2014.
  ZHU L J. Numerical simulation analysis on the deformation and the stress of inflated membrane structure[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese).
33 沈克利. 飞艇充气囊体变形规律的探究[D]. 上海: 上海交通大学, 2015.
  SHEN K L. Deformation research of inflatable envelope of airship[D]. Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese).
34 陈政. 飞艇索膜结构的变形分析与优化设计[D]. 上海: 上海交通大学, 2020.
  CHEN Z. Deformation analysis and optimization design of the airship cable-membrane structure[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
35 GAO W N, ZHANG J, MA T, et al. A novel inflatable rings supported design and buoyancy-weight balance deformation analysis of stratosphere airships[J]. Chinese Journal of Aeronautics202235(1): 340-347.
36 罗俊清. 临近空间软式飞艇结构特性分析[D]. 北京: 中国科学院大学,2014.
  LUO J Q. Structural characteristics analysis of near-space flexible airship[D].Beijing: University of Chinese Academy of Sciences, 2014 (in Chinese).
37 王卿宇. 临近空间软式飞艇结构特性分析[D]. 北京: 中国科学院大学, 2017.
  WANG Q Y. Structural characteristics analysis of near-space flexible airship[D].Beijing: University of Chinese Academy of Sciences, 2017 (in Chinese).
38 HU Y, CHEN W J, CHEN Y F, et al. Modal behaviors and influencing factors analysis of inflated membrane structures[J]. Engineering Structures2017132: 413-427.
39 高海健. 大型平流层平台柔性飞艇结构分析理论与特性研究[D]. 上海: 上海交通大学, 2010.
  GAO H J. Study on structural analysis theory and characteristics of large stratospheric platform flexible airship[D].Shanghai: Shanghai Jiao Tong University, 2010 (in Chinese).
40 高海健, 陈务军, 付功义, 等. 考虑气压效应平流层平台柔性飞艇变形分析方法与特征研究[J]. 应用力学学报201229(4): 374-379, 483.
  GAO H J, CHEN W J, FU G Y, et al. Deformation analysis method and performance evaluation for flexible airship of stratospheric platform considering pressure effects[J]. Chinese Journal of Applied Mechanics201229(4): 374-379, 483 (in Chinese).
41 刘龙斌, 吕明云, 肖厚地, 等. 基于压差梯度的平流层飞艇艇囊应力计算和仿真[J]. 北京航空航天大学学报201440(10): 1386-1391.
  LIU L B, Lü M Y, XIAO H D, et al. Calculation and simulation of stratospheric airship capsule stress considering the pressure gradient[J]. Journal of Beijing University of Aeronautics and Astronautics201440(10): 1386-1391 (in Chinese).
42 陈宇峰. 大型柔性飞艇主气囊结构分析与模型试验验证[D]. 上海: 上海交通大学, 2015.
  CHEN Y F. Structural analysis and model test verification of main airbag of large flexible airship[D].Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese).
43 ZHAO S, LIU D X, ZHAO D, et al. Change rules of a stratospheric airship’s envelope shape during ascent process[J]. Chinese Journal of Aeronautics201730(2): 752-758.
44 石泰百. 囊体材料与囊体结构强度模型及试验研究[D]. 上海: 上海交通大学, 2019.
  SHI T B. Experimental study and strength model for envelope materials and structures[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
45 李意. 半柔性结构飞艇模型静力学试验与分析[D]. 上海: 上海交通大学, 2019.
  LI Y. Statics experiments and analysis of semi-flexible structure airship model[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
46 XIE W C, WANG X L, DUAN D P, et al. Finite element simulation of the microstructure of stratospheric airship envelopes[J]. AIAA Journal202058(8): 3690-3699.
47 ROH J H, LEE H G, LEE I. Thermoelastic behaviors of fabric membrane structures[J]. Advanced Composite Materials200817(4): 319-332.
48 MENG J H, CAO S, QU Z P, et al. Thermoelasticity of a fabric membrane composite for the stratospheric airship envelope based on multiscale models[J]. Applied Composite Materials201724(1): 209-220.
49 LI X J, FANG X D, DAI Q M, et al. Modeling and analysis of floating performances of stratospheric semi-rigid airships[J]. Advances in Space Research201250(7): 881-890.
50 吉庆祥. 软式飞艇囊体结构弯皱特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.
  JI Q X. Bending-wrinkling analysis of nonrigid airship envelope[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
51 刘猛雄. 薄膜结构的屈曲与接触行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
  LIU M X. Study on buckling and contact behaviours of the membrane structure[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
52 邢道明. 平流层浮空器热特性及其热力学效应数值仿真研究[D]. 南京: 南京理工大学, 2018.
  XING D M. Numerical study on the thermal characteristic and thermal-mechanical effect of stratospheric aerostat[D]. Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese).
53 WEI J Z, MA R Q, HOU X, et al. Analysis of the thermodynamical property of super-pressure balloons[J]. Acta Mechanica2019230(4): 1355-1366.
54 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019.
  TAO W Q. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019 (in Chinese).
55 麻震宇, 杨希祥, 侯中喜. 平流层浮空器驻空热力学特性[M]. 北京: 科学出版社, 2020.
  MA Z Y, YANG X X, HOU Z X. Thermodynamic characteristics of stratospheric aerostat in space[M]. Beijing: Science Press, 2020 (in Chinese).
56 苗建印, 钟奇, 赵啟伟. 航天器热控制技术[M]. 北京: 北京理工大学出版社, 2018.
  MIAO J Y, ZHONG Q, ZHAO Q W. Spacecraft thermal control technology[M]. Beijing: Beijing Insititute of Technology Press, 2018 (in Chinese).
57 HARADA K, EGUCHI K, SANO M, et al. Experimental study of thermal modeling for stratospheric platform airship[C]∥ Proceedings of the AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum. Reston: AIAA, 2003.
58 王长国. 空间薄膜结构皱曲行为与特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
  WANG C G. Study on wrinkling behavior and characteristic of space membrane structures[D]. Harbin: Harbin Institute of Technology, 2007 (in Chinese).
59 张建, 杨庆山, 谭锋. 基于薄壳单元的薄膜结构褶皱分析[J]. 工程力学201027(8): 28-34, 39.
  ZHANG J, YANG Q S, TAN F. Analysis of wrinkled membrane structures by thin-shell elements[J]. Engineering Mechanics201027(8): 28-34, 39 (in Chinese).
60 谢军. 充气膜结构的褶皱及振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
  XIE J. Wrinkling and vibration studies on inflatable membrane structures[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese).
61 WONG W, PELLEGRINO S. Wrinkled membranes III: numerical simulations[J]. Journal of Mechanics of Materials and Structures20061(1): 63-95.
62 马瑞. 基于稳定理论的剪切薄膜褶皱发展过程及其动力特性研究[D]. 北京: 北京交通大学, 2013.
  MA R. Analysis on development of membrane wrinkles and dynamic characteristics based on stability theory[D]. Beijing: Beijing Jiaotong University, 2013 (in Chinese).
63 刘启军. 平面薄膜褶皱后力学行为的试验研究及数值分析[D]. 北京: 北京交通大学, 2018.
  LIU Q J. Experimental and numerical analysis of mechanical behavior of flat membranes after wrinkling[D]. Beijing: Beijing Jiaotong University, 2018 (in Chinese).
64 洪一红. 空间充气展开薄膜结构的动力学行为及褶皱问题研究[D]. 上海: 上海大学, 2019.
  HONG Y H. Research on dynamic behavior and wrinkling pattern of space inflatable membrane structure[D]. Shanghai: Shanghai University, 2019 (in Chinese).
65 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
  WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003 (in Chinese).
66 白婷. 基于显式有限元的多层气枕式薄膜结构受力及破坏分析[D]. 北京: 北京交通大学, 2017.
  BAI T. Stress and failure analysis on multi-layer membrane cushion structure using explicit finite element method[D]. Beijing: Beijing Jiaotong University, 2017 (in Chinese).
67 褚浩玥. 考虑褶皱影响的平面张拉薄膜动力特性及其风振响应分析[D]. 北京: 北京交通大学, 2018.
  CHU H Y. Analysis of dynamic properties and wind induced response of tensioned flat membranes with wrinkling deformation[D]. Beijing: Beijing Jiaotong University, 2018 (in Chinese).
68 DENG X W. Clefted equilibrium shapes of superpressure balloon structures[D]. Pasadena, CA: California Institute of Technology, 2012.
69 DIABY A, LE VAN A, WIELGOSZ C. Buckling and wrinkling of prestressed membranes[J]. Finite Elements in Analysis and Design200642(11): 992-1001.
70 KANG S, IM S. Finite element analysis of dynamic response of wrinkling membranes[J]. Computer Methods in Applied Mechanics and Engineering1999173(1-2): 227-240.
71 CONTRI P, SCHREFLER B A. A geometrically nonlinear finite element analysis of wrinkled membrane surfaces by a no-compression material model[J]. Communications in Applied Numerical Methods19884(1): 5-15.
Outlines

/