Fluid Mechanics and Flight Mechanics

Spatial streamwise vortex signature identification based on surface pressure information

  • Jianglong GUO ,
  • Yunsong GU ,
  • Shuai LUO ,
  • Linkai LI
Expand
  • College of Aerospace Engineering,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China

Received date: 2022-04-01

  Revised date: 2022-04-20

  Accepted date: 2022-06-21

  Online published: 2022-07-12

Supported by

National Numerical Windtunnel Project;National Natural Science Foundation of China(11972017);The Priority Academic Program Development of Jiangsu Education Institutions;Innovation Workstation Project of Yangzhou Institute of Shenyang Institute

Abstract

The interaction between vortices and the object surface exists in various situations of aircraft. The vortices affect the pressure distribution on the surface and aerodynamic performance of the aircraft. The pressure distribution on the surface can reflect the spatial flow characteristics of the vortices around the aircraft. Combined with the angle of attack, sideslip angle and other flow parameters, the surface pressure distribution can predict the force state and motion trend of the aircraft. This study establishes a vortex signature identification method based on surface pressure distribution according to the theories of point vortex and “mirror vortex”. The experimental results demonstrate that the surface pressure distribution curve can characterize the spatial position (projection position and height of the vortex core distance surface) and intensity of the vortex. The correlation analysis between the spatial flow field measurement and the vortex identification result based on surface pressure distribution verifies the effectiveness of the proposed method. It has laid an important technical foundation for reconstructing the vortex flow structure around the aircraft and realizing the prediction of the aerodynamic forces of the aircraft.

Cite this article

Jianglong GUO , Yunsong GU , Shuai LUO , Linkai LI . Spatial streamwise vortex signature identification based on surface pressure information[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(6) : 127228 -127228 . DOI: 10.7527/S1000-6893.2023.27228

References

1 高浩. 飞机大迎角飞行品质研究的进展[J]. 飞行力学199917(1): 1-7.
  GAO H. The advance of aircraft flying qualities researching at high angle of attack[J]. Flight Dynamics199917(1): 1-7 (in Chinese).
2 HERBST W B. Dynamics of air combat[J]. Journal of Aircraft198320(7): 594-598.
3 Francis M S, Keesee J E. Airfoil dynamic stall performance with large-amplitude motions[J]. AIAA Journal198523(11):1653-1659.
4 BRENTNER K S, FARASSAT F. Helicopter noise prediction: the current status and future direction[J]. Journal of Sound and Vibration1994170(1): 79-96.
5 LOWSON M V. Progress towards quieter civil helicopters[J]. The Aeronautical Journal199296(956): 209-223.
6 YU Y H. Rotor blade-vortex interaction noise[J]. Progress in Aerospace Sciences200036(2): 97-115.
7 任丁丁, 王俊琦, 杨柳, 等. 侧风条件下短舱进气道地面涡数值模拟[J]. 航空科学技术202132(2): 50-55.
  REN D D, WANG J Q, YANG L, et al. Numerical simulation of ground vortex of nacelle inlet under crosswind conditions[J]. Aeronautical Science & Technology202132(2): 50-55 (in Chinese).
8 LEE B H K. Vertical tail buffeting of fighter aircraft[J]. Progress in Aerospace Sciences200036(3-4): 193-279.
9 赵子杰, 高超, 张正科. 涡破裂诱导的垂尾抖振气动弹性分析[J]. 航空学报201637(2): 491-503.
  ZHAO Z J, GAO C, ZHANG Z K. Aeroelastic analysis of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et Astronautica Sinica201637(2): 491-503 (in Chinese).
10 AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, HEMSCH M J. Tactical missile aerodynamics: general topics[M]. Washington D. C.: American Institute of Aeronautics and Astronautics, 1992.
11 MCKENNA C, BROSS M, ROCKWELL D. Structure of a streamwise-oriented vortex incident upon a wing[J]. Journal of Fluid Mechanics2017816: 306-330.
12 MARKS C R, SONDERGAARD R. Vortex signature identification in surface pressure distributions using crease detection techniques[J]. AIAA Journal201755(6): 1783-1791.
13 李岸一, 王旭, 刘文法, 等. 鸭翼涡与边条涡对前掠翼布局的增升研究[J]. 空军工程大学学报(自然科学版)201011(1): 19-22, 58.
  LI A Y, WANG X, LIU W F, et al. Study on lift-enhancement of canard vortex and strake vortex to configuration with forward-swept wing[J]. Journal of Air Force Engineering University (Natural Science Edition)201011(1): 19-22, 58 (in Chinese).
14 WANG Q T, CHENG K M, GU Y S, et al. Continuous control of asymmetric forebody vortices in a bi-stable state[J]. Physics of Fluids201830(2): 024102.
15 顾蕴松. 大攻角前体非对称流动的控制技术[D]. 南京: 南京航空航天大学, 2005.
  GU Y S. Control of forebody flow asymmetry in high-angle flows[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005 (in Chinese).
16 陈尹, 顾蕴松, 孙之骏, 等. 基于翼面压力的飞行器气动力感知技术与自由飞验证[J]. 航空学报202142(3): 124138.
  CHEN Y, GU Y S, SUN Z J, et al. Aerodynamic perception from distributed pressure and free flight test[J]. Acta Aeronautica et Astronautica Sinica202142(3): 124138 (in Chinese).
17 顾蕴松, 史楠星, 孙之骏, 等. 一种基于飞行状态感知的智能飞行器及飞行方法: CN202010073060.1[P]. 2020-05-15.
  GU Y S, SHI N X, SUN Z J, et al. An intelligent aircraft and flight method based on flight state perception: CN202010073060.1[P]. 2020-05-15.
18 WITTMER K S, DEVENPORT W J. Effects of perpendicular blade-vortex interaction, part 1: Turbulence structure and development[J]. AIAA Journal199937(7): 805-812.
19 WITTMER K S, DEVENPORT W J, GLEGG S A L. Effects of perpendicular blade-vortex interaction, part 2: parameter study[J]. AIAA Journal199937(7): 813-817.
20 BOOTH E R Jr. Surface pressure measurement during low speed two-dimensional blade-vortex interaction[C]∥10th Aeroacoustics Conference. Reston: AIAA, 1986: 1856.
21 SCHRECK S, HELIN H. Unsteady vortex dynamics and surface pressure topologies on a pitching wing[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 435.
22 GREENWELL D I, WOOD N J. Determination of vortex burst location on delta wings from surface pressure measurements[J]. AIAA Journal199230(11): 2736-2739.
23 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报202038(3): 413-431, 478.
  LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica202038(3): 413-431, 478 (in Chinese).
24 孙之骏, 顾蕴松, 赵航. 流向涡-面干扰流动特征[J]. 空气动力学学报202038(3): 470-478.
  SUN Z J, GU Y S, ZHAO H. Experimental investigation of streamwise vortex-surface interaction[J]. Acta Aerodynamica Sinica202038(3): 470-478 (in Chinese).
25 章旷, 代钦. 地面效应作用下翼尖涡特性的PIV实验研究[J]. 空气动力学学报201533(3): 367-374, 405.
  ZHANG K, DAI Q. Experimental study on the tip vortices of a wing close to a flat and a wavy surface using PIV[J]. Acta Aerodynamica Sinica201533(3): 367-374, 405 (in Chinese).
26 BODSTEIN G, GEORGE A, HUI C. Vortex/surface interaction[C]∥ 31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
Outlines

/