ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Instance segmentation for vehicle in UAV aerial images based on feature enhancement and calibration
Received date: 2022-12-14
Revised date: 2022-12-24
Accepted date: 2023-03-22
Online published: 2023-03-31
Yucheng YAO , Xu LI , Qimin XU , Dong KONG . Instance segmentation for vehicle in UAV aerial images based on feature enhancement and calibration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(24) : 328397 -328397 . DOI: 10.7527/S1000-6893.2023.28397
1 | OSCO L P, MARCATO J Jr, MARQUES RAMOS A P, et al. A review on deep learning in UAV remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102456. |
2 | ZHANG H, SUN H, AO W, et al. A survey on instance segmentation: Recent advances and challenges[J]. International Journal of Innovative Computing, Information and Control, 2021, 17(3): 1041-1053. |
3 | MOU L C, ZHU X X. Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6699-6711. |
4 | AMMOUR N, ALHICHRI H, BAZI Y, et al. Deep learning approach for car detection in UAV imagery[J]. Remote Sensing, 2017, 9(4): 312. |
5 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv preprint: 1409.1556, 2014. |
6 | AUDEBERT N, LE SAUX B, LEFèVRE S. Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images[J]. Remote Sensing, 2017, 9(4): 368. |
7 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
8 | BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: Real-time instance segmentation[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 9156-9165. |
9 | TIAN Z, SHEN C H, CHEN H. Conditional convolutions for instance segmentation[M]∥Computer Vision–ECCV 2020. Cham: Springer International Publishing, 2020: 282-298. |
10 | SU H, HUANG P, YIN J, et al. Faster and better instance segmentation for large scene remote sensing imagery[C]∥IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 2187-2190. |
11 | YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2403-2412. |
12 | TAN M X, PANG R M, LE Q V. EfficientDet: Scalable and efficient object detection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 10778-10787. |
13 | HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2980-2988. |
14 | WANG J W, DING J A, GUO H W, et al. Mask OBB: A semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images[J]. Remote Sensing, 2019, 11(24): 2930. |
15 | PAN T, DING J, WANG J W, et al. Instance segmentation with oriented proposals for aerial images[C]∥IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2021: 988-991. |
16 | HU J, CAO L J, LU Y, et al. ISTR: End-to-end instance segmentation with transformers[DB/OL]. arXiv preprint: 2105.00637, 2021. |
17 | ZHANG W, LIU C S, CHANG F L, et al. Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images[J]. Remote Sensing, 2020, 12(11): 1760. |
18 | CAI Z W, VASCONCELOS N. Cascade R-CNN: High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498. |
19 | CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4969-4978. |
20 | SU H, WEI S J, LIU S, et al. HQ-ISNet: High-quality instance segmentation for remote sensing imagery[J]. Remote Sensing, 2020, 12(6): 989. |
21 | VASWANI A, BRAIN G, SHAZEER N, et al. Attention is all you need[C]∥Advances in Neural Information Processing Systems, 2017: 30. |
22 | QIN Z, LI Z M, ZHANG Z N, et al. ThunderNet: Towards real-time generic object detection on mobile devices[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 6717-6726. |
23 | YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3684-3692. |
24 | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803. |
25 | PECORARO R, BASILE V, BONO V. Local multi-head channel self-attention for facial expression recognition[J]. Information, 2022, 13(9): 419. |
26 | TSAI Y H H, BAI S J, YAMADA M, et al. Transformer dissection: A unified understanding of transformer’s attention via the lens of kernel[DB/OL]. arXiv preprint: 1908.11775, 2019. |
27 | KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: Fast autoregressive transformers with linear attention[DB/OL]. arXiv preprint: 2006.16236, 2020. |
28 | QIN Z, SUN W X, DENG H, et al. cosFormer: Rethinking softmax in attention[DB/OL]. arXiv preprint: 2202.08791, 2022. |
29 | WANG X L, KONG T, SHEN C H, et al. SOLO: Segmenting objects by locations[M]∥Computer Vision- ECCV 2020. Cham: Springer International Publishing, 2020: 649-665. |
30 | FANG Y X, YANG S S, WANG X G, et al. Instances as queries[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2022: 6890-6899. |
31 | KIRILLOV A, WU Y X, HE K M, et al. PointRend: Image segmentation As rendering[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 9796-9805. |
32 | QIAO S Y, CHEN L C, YUILLE A. DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 10208-10219. |
/
〈 |
|
〉 |