Electronics and Electrical Engineering and Control

Instance segmentation for vehicle in UAV aerial images based on feature enhancement and calibration

  • Yucheng YAO ,
  • Xu LI ,
  • Qimin XU ,
  • Dong KONG
Expand
  • School of Instrument Science and Engineering,Southeast University,Nanjing 210016,China
E-mail: lixu.mail@163.com

Received date: 2022-12-14

  Revised date: 2022-12-24

  Accepted date: 2023-03-22

  Online published: 2023-03-31

Cite this article

Yucheng YAO , Xu LI , Qimin XU , Dong KONG . Instance segmentation for vehicle in UAV aerial images based on feature enhancement and calibration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(24) : 328397 -328397 . DOI: 10.7527/S1000-6893.2023.28397

References

1 OSCO L P, MARCATO J Jr, MARQUES RAMOS A P, et al. A review on deep learning in UAV remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation2021102: 102456.
2 ZHANG H, SUN H, AO W, et al. A survey on instance segmentation: Recent advances and challenges[J]. International Journal of Innovative Computing, Information and Control202117(3): 1041-1053.
3 MOU L C, ZHU X X. Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing201856(11): 6699-6711.
4 AMMOUR N, ALHICHRI H, BAZI Y, et al. Deep learning approach for car detection in UAV imagery[J]. Remote Sensing20179(4): 312.
5 SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv preprint: 1409.1556, 2014.
6 AUDEBERT N, LE SAUX B, LEFèVRE S. Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images[J]. Remote Sensing20179(4): 368.
7 BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(12): 2481-2495.
8 BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: Real-time instance segmentation[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 9156-9165.
9 TIAN Z, SHEN C H, CHEN H. Conditional convolutions for instance segmentation[M]∥Computer Vision–ECCV 2020. Cham: Springer International Publishing, 2020: 282-298.
10 SU H, HUANG P, YIN J, et al. Faster and better instance segmentation for large scene remote sensing imagery[C]∥IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 2187-2190.
11 YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2403-2412.
12 TAN M X, PANG R M, LE Q V. EfficientDet: Scalable and efficient object detection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 10778-10787.
13 HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2980-2988.
14 WANG J W, DING J A, GUO H W, et al. Mask OBB: A semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images[J]. Remote Sensing201911(24): 2930.
15 PAN T, DING J, WANG J W, et al. Instance segmentation with oriented proposals for aerial images[C]∥IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2021: 988-991.
16 HU J, CAO L J, LU Y, et al. ISTR: End-to-end instance segmentation with transformers[DB/OL]. arXiv preprint: 2105.00637, 2021.
17 ZHANG W, LIU C S, CHANG F L, et al. Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images[J]. Remote Sensing202012(11): 1760.
18 CAI Z W, VASCONCELOS N. Cascade R-CNN: High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202143(5): 1483-1498.
19 CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4969-4978.
20 SU H, WEI S J, LIU S, et al. HQ-ISNet: High-quality instance segmentation for remote sensing imagery[J]. Remote Sensing202012(6): 989.
21 VASWANI A, BRAIN G, SHAZEER N, et al. Attention is all you need[C]∥Advances in Neural Information Processing Systems, 2017: 30.
22 QIN Z, LI Z M, ZHANG Z N, et al. ThunderNet: Towards real-time generic object detection on mobile devices[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 6717-6726.
23 YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3684-3692.
24 WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803.
25 PECORARO R, BASILE V, BONO V. Local multi-head channel self-attention for facial expression recognition[J]. Information202213(9): 419.
26 TSAI Y H H, BAI S J, YAMADA M, et al. Transformer dissection: A unified understanding of transformer’s attention via the lens of kernel[DB/OL]. arXiv preprint1908.11775, 2019.
27 KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: Fast autoregressive transformers with linear attention[DB/OL]. arXiv preprint2006.16236, 2020.
28 QIN Z, SUN W X, DENG H, et al. cosFormer: Rethinking softmax in attention[DB/OL]. arXiv preprint: 2202.08791, 2022.
29 WANG X L, KONG T, SHEN C H, et al. SOLO: Segmenting objects by locations[M]∥Computer Vision- ECCV 2020. Cham: Springer International Publishing, 2020: 649-665.
30 FANG Y X, YANG S S, WANG X G, et al. Instances as queries[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2022: 6890-6899.
31 KIRILLOV A, WU Y X, HE K M, et al. PointRend: Image segmentation As rendering[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 9796-9805.
32 QIAO S Y, CHEN L C, YUILLE A. DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 10208-10219.
Outlines

/