Articles

Rapid robust trajectory optimization for RBCC vehicle ascent based on polynomial chaos

  • Xunliang YAN ,
  • Peichen WANG ,
  • Shumei WANG ,
  • Yuxuan YANG ,
  • Kuan WANG
Expand
  • 1.Shaanxi Aerospace Flight Vehicle Design Key Laboratory,School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Flight Test Center,Commercial Aircraft Corporation of China Ltd. ,Shanghai 201323,China
E-mail: xly_nwpu@126.com

Received date: 2022-12-02

  Revised date: 2022-12-26

  Accepted date: 2023-03-16

  Online published: 2023-03-21

Supported by

National Natural Science Foundation of China(11602296);Natural Science Basis Research Plan in Shaanxi Province of China(2019JM-434);Fundamental Research Funds for the Central Universities(G2022KY0613)

Abstract

The ascent trajectory design for Rocket-Based Combined Cycle (RBCC) hypersonic vehicle has many typical characteristics, including complex power system working modes, strong coupling between thrust and flight state, highly nonlinear models, numerous complex constraints, parameter uncertainties, etc. In this paper, a robust trajectory optimization method for RBCC power ascent based on non-intrusive polynomial chaos, the Gaussian quadrature strategy, and sequential convex optimization is proposed to enhance the trajectory’s anti-interference ability and process reliability. Firstly, a robust trajectory optimization model for the RBCC hypersonic ascent, accounting for parameter uncertainties, is established. An uncertainty quantification propagation algorithm based on the Gaussian quadrature strategy and non-intrusive polynomial chaos is designed to transform the robust optimization model into a deterministic trajectory optimization problem with extended dimensions. Then, the extend model is convexified and discretized using convex optimization theory, and a trajectory optimization solution strategy based on sequential convex optimization algorithm is established to achieve a solution of this high-dimensional deterministic optimization problem. The optimaization results of a certain air-based vehicle’s ascent trajectory indicate that based on the constructed model and trajectory method, the robust trajectory optimization of the ascent phase of the RBCC hypersonic aircraft can be effectively completed, and the optimization results are in line with the working characteristics of the RBCC power system. Compared with the traditional deterministic trajectory optimization algorithm, the proposed method can effectively reduce the influence of random disturbances on the ascent trajectory, thereby improving the reliability and robustness of the trajectory.

Cite this article

Xunliang YAN , Peichen WANG , Shumei WANG , Yuxuan YANG , Kuan WANG . Rapid robust trajectory optimization for RBCC vehicle ascent based on polynomial chaos[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 528349 -528349 . DOI: 10.7527/S1000-6893.2023.28349

References

1 王亚军, 何国强, 秦飞 等. 火箭冲压组合动力研究进展[J]. 宇航学报201940(10): 1126-1133.
  WANG Y J, HE G Q, QIN F, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics201940(10): 1125-1133 (in Chinese).
2 阮建刚, 何国强, 吕翔. RBCC-RKT两级入轨飞行器飞行轨迹优化方法[J]. 航空学报201435(5): 1284-1291.
  RUAN J G, HE G Q, LV X. Trajectory optimization method in two-stage-to-orbit RBCC-RKT launch Vehicle[J]. Acta Aeronautica et Astronautica Sinica201435(5): 1284-1291 (in Chinese).
3 OLDS J, BUDIANTO I. Constant dynamic pressure trajectory simulation with post[C]∥AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: 1-12.
4 孙佩华, 刘燕斌, 陈柏屹. 基于预置动压的高超声速飞行器上升段轨迹设计[J]. 飞行力学201735(5):57-61.
  SUN P H, LIU Y B, CHEN B Y. Ascent trajectory design of hypersonic vehicle based on preset dynamic pressure[J]. Flight Dynamics201735(5):57-61 (in Chinese).
5 李惠峰, 李昭莹. 高超声速飞行器上升段最优制导间接法研究[J]. 宇航学报201132(2): 297-302.
  LI H F, LI Z Y. Indirect method of optimal ascent guidance for hypersonic vehicle[J]. Journal of Astronautics201132(2): 297-302 (in Chinese).
6 DEREK J, DRISCOLL F. Minimum-fuel ascent of a hypersonic vehicle using surrogate optimization[J]. Journal of Aircraft201451(6): 1973-1986.
7 龚春林, 韩璐, 谷良贤. 适应于RBCC运载器的轨迹优化建模研究[J]. 宇航学报201334(12): 1592-1598.
  GONG C L, HAN L, GU L X. Research on modeling of trajectory optimization for RBCC-powered RLV[J]. Journal of Astronautics201334(12): 1592-1598.
8 周宏宇, 王小刚, 崔乃刚 等. 基于hp自适应伪谱法的组合动力可重复使用运载器轨迹优化[J]. 中国惯性技术学报201624(6): 832-837.
  ZHOU H Y, WANG X G, CUI N G, et al. Trajectory optimization of reusable vehicle with combined power based on hp adaptive pseudospectral algorithm [J]. Journal of Chinese Inertial Technology201624(6): 832-837.
9 WEI J L, TANG X J, YAN J. Costate estimation for a multiple-interval pseudospectral method using collocation at the flipped Legendre-Gauss-Radau points [J]. IEEE/CAA Journal of Automatica Sinica201812: 1-15.
10 Yang S B, Cui T, Hao X Y, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method [J]. Aerospace Science and Technology201767: 88-95.
11 SONG J, SUA H Q. The ascent trajectory optimization of two-stage-to-orbit aerospace plane based on pseudospectral method [J]. Procedia Engineering201599: 1044-1048.
12 ZHOU H Y, WANG X G, BAI Y L, et al. Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization[J]. Acta Astronautica2017140: 156-165.
13 LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics20171(1): 23-40.
14 LU P, LIU X F. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics201437(3):750-765.
15 罗哲, 王舒眉, 闫循良, 等. RBCC动力高超声速飞行器上升段轨迹优化设计[J]. 红外与激光工程202251(8): 478-485.
  LUO Z, WANG S M, YAN X L, et al. Trajectory optimization design of ascending stage of RBCC powered hypersonic vehicle [J]. Infrared and Laser Engineering202251(8): 478-485.
16 LIU X F, SHEN Z J, LU P, Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics201539(2): 227-241.
17 LU P, LIU X F, Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics. 201336(2): 375-389.
18 SONG Z Y, WANG C. Powered soft landing guidance method for launchers with non-cluster configured engines[J]. Acta Astronautica2021189: 379-390.
19 LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics201942(1): 65-76.
20 陈琦, 王中原, 常思江,等. 不确定飞行环境下的滑翔制导炮弹方案弹道优化[J]. 航空学报201435(9): 2593-2604.
  CHEN Q, WANG Z Y, CHANG S J, et al. Optimal trajectory design under uncertainty for a gliding guided projectile[J]. Acta Aeronautica et Astronautica Sinica201435(9): 2593-2604 (in Chinese).
21 YANG Z, LUO Y Z, ZHANG J. Robust planning of nonlinear rendezvous with uncertainty[J]. Journal of Guidance Control and Dynamics201740(8): 1954-1967.
22 FISHER J, BHATTACHARYA R. Optimal trajectory generation with probabilistic system uncertainty using polynomial chaos[J]. Journal of Dynamic Systems Measurement and Control2011133(1): 014501.
23 WANG F, YANG S, XIONG F F, et al. Robust trajectory optimization using polynomial chaos and convex optimization[J]. Aerospace Science and Technology201992(2): 314-325.
24 LI X, NAIR P B, ZHANG Z G. Aircraft robust trajectory optimization using nonintrusive polynomial chaos[J]. Journal of Aircraft201451(5): 1592-1603.
25 JIANG X Q, LI S. Uncertainty quantification for mars atmospheric entry using polynomial chaos and spectral decomposition[C]∥AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018:1-18.
26 XIONG F F, Chen S S, XIONG Y. Dynamic system uncertainty propagation using polynomial chaos[J]. Chinese Journal of Aeronautics201427(5): 1156-1170.
27 HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal201048(12):2721-2730.
28 JIANG X Q, LI S. Mars entry trajectory planning using robust optimization and uncertainty quantification[J]. Acta Astronautica2019161: 249-261.
29 杨奔, 雷建长, 王宇航. 考虑气动参数扰动的再入轨迹快速优化方法[J]. 力学学报202052(6): 67-77.
  YANG B, LEI J C, WANG Y H. Fast optimization method of reentry trajectory considering aerodynamic parameter perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics202052(6):67-77 (in Chinese).
30 杨奔, 李天任, 马晓媛. 基于序列凸优化的多约束轨迹快速优化[J]. 航天控制202038(3): 25-30.
  YANG B, LI T R, MA X Y. Fast multi-constraints trajectory optimization based on sequence convex optimization[J]. Aerospace Control202038(3): 25-30 (in Chinese).
31 ELDRED M S, WEBSTER C G, CONSTANTINE P G. Evaluation of non-intrusive approaches for wiener-askey generalized polynomial chaos[C]∥49th AIAA Structural Dynamics and Materials Conference. Reston: AIAA, 2008.
Outlines

/