Electronics and Electrical Engineering and Control

An infrared small target detection method based on key point

  • Qiang WANG ,
  • Letian WU ,
  • Yong WANG ,
  • Huan WANG ,
  • Wankou YANG
Expand
  • 1.School of Automation,Southeast University,Nanjing  210096,China
    2.Jiangsu Automation Research Institute,Lianyungang  222061,China
    3.Unmanned System Research Institute,Northwestern Polytechnical University,Xi’an  710072,China
    4.School of Computer Science and Engineering,Nanjing University of Technology,Nanjing  210094,China
E-mail: wkyang@seu.edu.cn

Received date: 2022-10-26

  Revised date: 2022-11-09

  Accepted date: 2023-03-20

  Online published: 2023-03-21

Supported by

National Natural Science Foundation of China(62276061)

Abstract

Infrared small target detection aims to detect infrared dim small targets from complex background. With wide application of this technology in monitoring and early warning systems, precise guidance, etc., how to realize fast and accurate detection of infrared small targets is of great importance. Existing traditional algorithms often result in missed detection or false detection, and the detection method based on semantic segmentation in deep learning is easy to be affected by “over segmentation” and “under segmentation”. To address these problems, an infrared small target detection algorithm is proposed based on key point detection (KeypointNet). The main innovations of this study are as follows. First, The coordinates of the target center point is directly optimized, improving detection efficiency and effectively ensuring the detection rate and false alarm rate of the target. Second, a low-high level feature fusion module is designed to obtain multi-scale information of the target and improve the detection effect. Experimental results on relevant data sets show that in comparison with other algorithms, the algorithm proposed can achieve better effect, with the detection rate reaching 97.58% and the false alarm rate being reduced to less than 2%.

Cite this article

Qiang WANG , Letian WU , Yong WANG , Huan WANG , Wankou YANG . An infrared small target detection method based on key point[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(10) : 328173 -328173 . DOI: 10.7527/S1000-6893.2023.28173

References

1 TEUTSCH M, KRüGER W. Classification of small boats in infrared images for maritime surveillance[C]∥ 2010 International WaterSide Security Conference. Piscataway: IEEE Press, 2011: 1-7.
2 DENG H, SUN X P, LIU M L, et al. Small infrared target detection based on weighted local difference measure[J]. IEEE Transactions on Geoscience and Remote Sensing201654(7): 4204-4214.
3 SUN Y, YANG J G, AN W. Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model[J]. IEEE Transactions on Geoscience and Remote Sensing202159: 3737-3752.
4 梁杰, 李磊, 任君, 等. 基于深度学习的红外图像遮挡干扰检测方法[J]. 兵工学报201940(7): 1401-1410.
  LIANG J, LI L, REN J, et al. Infrared image occlusion interference detection method based on deep learning[J]. Acta Armamentarii201940(7): 1401-1410 (in Chinese).
5 赵坤, 孔祥维. 小目标红外图像背景噪声的抑制及方法讨论[J]. 光学与光电技术20042(2): 9-12.
  ZHAO K, KONG X W. Background noise suppression in small targets infrared images and its method discussion[J]. Optics & Optoelectronic Technology20042(2): 9-12 (in Chinese).
6 HOU X D, ZHANG L Q. Saliency detection: A spectral residual approach[C]∥ 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2007: 1-8.
7 龙云利, 徐晖, 安玮, 等. 基于约束序贯M估计的时空域融合红外杂波抑制[J]. 航空学报201132(8): 1531-1541.
  LONG Y L, XU H, AN W, et al. Spatial-temporal fused filtering for infrared clutter suppression based on restricted sequential M-estimation[J]. Acta Aeronautica et Astronautica Sinica201132(8): 1531-1541 (in Chinese).
8 PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing201452(1): 574-581.
9 LIU M, DU H, ZHAO Y, et al. Image small target detection based on deep learning with SNR controlled sample generation[M]∥Current Trends in Computer Science and Mechanical Automation. De Gruyter Open Poland, 2018: 211-220.
10 张凯, 王凯迪, 杨曦, 等. 基于DNET的空中红外目标抗干扰识别算法[J]. 航空学报202142(2): 324223.
  ZHANG K, WANG K D, YANG X, et al. Anti-interference recognition algorithm based on DNET for infrared aerial target[J]. Acta Aeronautica et Astronautica Sinica202142(2): 324223 (in Chinese).
11 DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]∥ 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2021: 949-958.
12 LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[DB/OL]. arXiv preprint: 2106.00487, 2021.
13 LIU F C, GAO C Q, CHEN F, et al. Infrared small-dim target detection with transformer under complex backgrounds[DB/OL]. arXiv preprint: 2109.14379, 2021.
14 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报201930(2): 440-468.
  TIAN X, WANG L, DING Q. Review of image semantic segmentation based on deep learning[J]. Journal of Software201930(2): 440-468 (in Chinese).
15 SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]∥ IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2016: 640-651.
16 RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[DB/OL]. arXiv preprint: 1505.04597, 2015.
17 BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(12): 2481-2495.
18 CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[DB/OL]. arXiv preprint: 1412.7062, 2014.
19 NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[DB/OL]. arXiv preprint: 1603.06937, 2016.
20 TOMPSON J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[C]∥ Proceedings of the 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014: 1799–1807.
21 ZHOU X Y, WANG D Q, KR?HENBüHL P. Objects as points[DB/OL]. ArXiv preprint1904.07850, 2019.
22 ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 6230-6239.
23 WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803.
24 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000–6010.
25 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6): 1137-1149.
26 WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 8508-8517.
27 XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[C]∥European Conference on Computer Vision. Cham: Springer, 2018: 472-487.
28 GAO C Q, TIAN J W, WANG P. Generalised-structure-tensor-based infrared small target detection[J]. Electronics Letters200844(23): 1349-1351.
29 HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters201411(12): 2168-2172.
30 ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties[J]. Infrared Physics & Technology201889: 88-96.
31 ZHANG L, PENG L, ZHANG T, et al. Infrared small target detection via non-convex rank approximation minimization joint l2, 1 norm[J]. Remote Sensing201810(11): 1821-1846.
32 ZHANG L, PENG Z. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing201911(4): 382-415.
33 HAN J H, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Letters202017(10): 1822-1826.
34 FENG Z H, KITTLER J, AWAIS M, et al. Wing loss for robust facial landmark localisation with convolutional neural networks[DB/OL]. ArXiv preprint: 1711.06753, 2017.
35 LIANG D, GENG Q X, WEI Z Q, et al. Anchor retouching via model interaction for robust object detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 1-13.
36 WEI Z Q, LIANG D, ZHANG D, et al. Learning calibrated-guidance for object detection in aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202215: 2721-2733.
Outlines

/