ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Chatter online monitoring of robotic longitudinal⁃torsional ultrasonic edge trimming
Received date: 2022-08-12
Revised date: 2022-08-30
Accepted date: 2022-10-19
Online published: 2023-03-21
Supported by
National Natural Science Foundation of China(52075265);The Project on the Technological Leading Talent Teams Led by Frontiers Science Center for Complex Equipment System Dynamics(FSCCESD220401)
To address the problem of chatter misjudgment in robotic longitudinal-torsional ultrasonic edge trimming due to isolated information, this paper proposes a chatter monitoring method based on multi-source features fusion. Firstly, the Maximum Correlation Minimum Redundancy (MRMR) algorithm is applied for studying the sensitivity of different features to chatter, and a multi-source feature classification model is constructed. Then, Principal Component Analysis (PCA) is used to fuse the top 3 sensitive features (energy entropy, center of gravity frequency, and waveform factor) into a new chatter feature. Meanwhile, the chatter threshold of the system is determined to be 0.44 based on the PauTa criterion. The robotic longitudinal-torsional ultrasonic edge trimming process is divided into three states: stable, slight chatter and severe chatter. Finally, the online monitoring software of the robotic longitudinal-torsional ultrasonic edge trimming chatter is written to achieve accurate detection and identification of chatter state. Experimental results of this study show that the response time of fused features can be 1.536 s earlier than that of the traditional single feature.
Tao WANG , Xuefeng GAO , Jinping ZHU , Song DONG , Lianjun SUN , Kan ZHENG . Chatter online monitoring of robotic longitudinal⁃torsional ultrasonic edge trimming[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(13) : 262 -272 . DOI: 10.7527/S1000-6893.2022.27919
1 | ZHU D H, FENG X Z, XU X H, et al. Robotic grinding of complex components: a step towards efficient and intelligent machining-challenges, solutions, and applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101908. |
2 | 王立凡. 大型薄壁构件镜像加工装备运动控制技术研究[D]. 大连: 大连理工大学, 2019: 1-5. |
WANG L F. Study on motion control of mirror milling equipment for large thin-walled parts[D]. Dalian: Dalian University of Technology, 2019: 1-5 (in Chinese). | |
3 | 薛雷, 曾宏伟, 覃程锦, 等. 采用同步压缩变换和能量熵的机器人加工颤振监测方法[J]. 西安交通大学学报, 2019, 53(8): 24-30, 89. |
XUE L, ZENG H W, QIN C J, et al. A chatter monitoring method for robotic machining using synchro-squeezed transform and energy entropy[J]. Journal of Xi'an Jiaotong University, 2019, 53(8): 24-30, 89 (in Chinese). | |
4 | 廖文和, 田威, 李波, 等. 机器人精度补偿技术与应用进展[J]. 航空学报, 2022, 43(5): 627142. |
LIAO W H, TIAN W, LI B, et al. Error compensation technology and its application progress of an industrial robot[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 627142 (in Chinese). | |
5 | 董松, 郑侃, 孟丹, 等. 大型复杂构件机器人制孔技术研究进展[J]. 航空学报, 2022, 43(5): 627133. |
DONG S, ZHENG K, MENG D, et al. Robotic drilling of large complex components: a review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 627133 (in Chinese). | |
6 | 廖文和, 郑侃, 孙连军, 等. 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022, 43(1): 026061. |
LIAO W H, ZHENG K, SUN L J, et al. Review on chatter stability in robotic machining for large complex components[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 026061 (in Chinese). | |
7 | 孙红伟, 祝景萍, 郑侃, 等. 机床与机器人旋转超声铣边对比试验研究[J]. 南京理工大学学报, 2022, 46(1): 1-6. |
SUN H W, ZHU J P, ZHENG K, et al. Comparative experimental research on rotary ultrasonic edge trimming of machine tool and robot[J]. Journal of Nanjing University of Science and Technology, 2022, 46(1): 1-6 (in Chinese). | |
8 | ZHANG J L, LIAO W H, ZHAO W, et al. Research on stability of robotic longitudinal-torsional ultrasonic milling with variable cutting force coefficient[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(3-4): 1707-1715. |
9 | SUN L J, ZHENG K, LIAO W H, et al. Investigation on chatter stability of robotic rotary ultrasonic milling[J]. Robotics and Computer-Integrated Manufacturing, 2020, 63: 101911. |
10 | TLUSTY J. Manufacturing processes and equipment[M]. Upper Saddle River, NJ: Prentice-Hall, 2000. |
11 | ALTINTAS Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design[M]. 2nd ed. Cambridge: Cambridge University Press, 2012. |
12 | YAO Z H, MEI D Q, CHEN Z C. On-line chatter detection and identification based on wavelet and support vector machine[J]. Journal of Materials Processing Technology, 2010, 210(5): 713-719. |
13 | 张磊, 郑侃, 孙连军, 等. 基于小波包敏感频带选择的复材铣边颤振监测研究[J]. 机械工程学报, 2022, 58(3): 140-148. |
ZHANG L, ZHENG K, SUN L J, et al. Investigation on chatter monitoring of composite milling edge based on the selection of sensitive frequency band of wavelet packet[J]. Journal of Mechanical Engineering, 2022, 58(3): 140-148 (in Chinese). | |
14 | 董辉跃, 吴杨宝, 郭英杰, 等. 机器人精镗飞机交点孔的颤振分析与识别[J]. 浙江大学学报(工学版), 2018, 52(8): 1517-1525. |
DONG H Y, WU Y B, GUO Y J, et al. Chatter analysis and identification in robotic fine boring of aircraft intersection holes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(8): 1517-1525 (in Chinese). | |
15 | CHEN F, ZHAO H. Design of eddy current dampers for vibration suppression in robotic milling[J]. Advances in Mechanical Engineering, 2018, 10(11): 1687814018814075. |
16 | SUN L J, LIAO W H, ZHENG K, et al. Stability analysis of robotic longitudinal-torsional composite ultrasonic milling[J]. Chinese Journal of Aeronautics, 2022, 35(8): 249-264. |
17 | 郭伟华. 机器人旋转超声铣削铝合金工艺实验研究[D]. 南京: 南京理工大学, 2019: 28-39. |
GUO W H. Experimental study on rotary ultrasonic milling of aluminum alloy by robot[D]. Nanjing: Nanjing University of Science and Technology, 2019: 28-39 (in Chinese). | |
18 | 郑侃, 廖文和, 孙连军, 等. 机器人纵振与纵扭超声铣削稳定性对比研究[J]. 机械工程学报, 2021, 57(7): 10-17. |
ZHENG K, LIAO W H, SUN L J, et al. Comparative study on stability of robotic longitudinal vibration and longitudinal-torsional ultrasonic milling[J]. Journal of Mechanical Engineering, 2021, 57(7): 10-17 (in Chinese). | |
19 | DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145: 346-352. |
20 | 隋翯, 张德远, 陈华伟, 等. 超声振动切削对耦合颤振的影响[J]. 航空学报, 2016, 37(5): 1696-1704. |
SUI H, ZHANG D Y, CHEN H W, et al. Influence of ultrasonic vibration cutting on mode-coupling chatter[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1696-1704 (in Chinese). | |
21 | 张翔宇, 隋翯, 张德远, 等. 高速超声振动切削钛合金可行性研究[J]. 机械工程学报, 2017, 53(19): 120-127. |
ZHANG X Y, SUI H, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Mechanical Engineering, 2017, 53(19):120-127 (in Chinese). | |
22 | 韩雄, 孙哲飞, 耿大喜, 等. 高速超声振动铣削钛合金实验研究[J]. 北京航空航天大学学报,2022: 1-11.(网络首发) |
HAN X, SUN Z F, GENG D X, et al. Study on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2022: 1-11 (in Chinese). | |
23 | JI W, WANG L H. Industrial robotic machining: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 1239-1255. |
24 | KULJANIC E, TOTIS G, SORTINO M. Development of an intelligent multisensor chatter detection system in milling[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1704-1718. |
25 | KULJANIC E, SORTINO M, TOTIS G. Multisensor approaches for chatter detection in milling[J]. Journal of Sound and Vibration, 2008, 312(4-5): 672-693. |
26 | 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23. |
WANG Z X, LIU X L, LI M Y, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23 (in Chinese). | |
27 | 董礼仪. 多传感器融合的刀具磨损预测及多工况迁移学习研究[D]. 成都: 电子科技大学, 2020. |
DONG L Y. Tool wear prediction based on multi-sensor information fusion and transfer learning under multiple operating conditions[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese). | |
28 | 李洁平. 铣削加工颤振试验设计及其应用[D]. 武汉:华中科技大学, 2019. |
LI J P. Design and application of milling chatter tests[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). |
/
〈 |
|
〉 |