ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influencing factors of weapon separation of hypersonic vehicles in near space
Received date: 2023-02-10
Revised date: 2023-03-02
Accepted date: 2023-03-10
Online published: 2023-03-17
Supported by
CAST Innovation Fund(CAST-2020-02-04)
To thoroughly analyze the feasibility of hypersonic vehicle weapon separation in near space and address the challenge of simulating complex conditions in ground tests, we investigate five influencing factors: Flight altitude, aircraft angle of attack, initial installation angle of missile, ejection force magnitude, and ejection force action time. The attitude change of the missile launch under different operating conditions is solved by numerical simulation with the dynamic grid fluid-dynamics two-way coupling method. The results show that the negative angle of attack is conducive to the fast and safe completion of aircraft-missile separation tasks. When the aircraft angle of attack is adjusted from 4° to -4°, the angular displacement in the X-axis direction decreases from 5.49° to -6.98°, and the missile head-up trend disappears completely. As the altitude increases, the missile head-up trend gradually disappears, and both the missile displacement and angular displacement at the flight altitude of 35 km are favorable to aircraft-missile separation. The effect of the initial installation angle on the missile displacement and angular displacement is significant. When the initial installation angle is adjusted from 5° to -3°, the missile negative displacement in the Z-axis increases by 36.23%, the negative angular displacement in the Z-axis increases by 184.24%, and the negative initial installation angle has significant advantages in all directions of displacement and angular displacement. Ejection force magnitude and ejection force action time directly affect missile launch attitudes. The optimal combination is the ejection force magnitude of 20 kN and the ejection force action time of 0.05 s. This research can provide a reference for feasible options and scientific prediction for weapon separation of hypersonic vehicle in near space.
Key words: near space; hypersonic; weapon separation; vehicles; dynamic grid
Yuhong CUI , Yizhe XU , Fanxi LYU , Fei ZHAO , Yujia ZHANG , Jiameng SUN , Guang ZUO . Influencing factors of weapon separation of hypersonic vehicles in near space[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(24) : 128539 -128539 . DOI: 10.7527/S1000-6893.2023.28539
1 | 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. |
HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese). | |
2 | 王鹏飞, 王光明, 蒋坤, 等. 临近空间高超声速飞行器发展及关键技术研究[J]. 飞航导弹, 2019(8): 22-28, 34. |
WANG P F, WANG G M, JIANG K, et al. Research on development and key technologies of near space hypersonic vehicle[J]. Aerospace Technology, 2019(8): 22-28, 34 (in Chinese). | |
3 | TSIEN H S. Similarity laws of hypersonic flows[J]. Journal of Mathematics and Physics, 1946, 25(1-4): 247-251. |
4 | 陈坚强, 张益荣, 郭勇颜. 高超声速流动数值模拟方法及应用[M]. 北京: 科学出版社, 2019. |
CHEN J Q, ZHANG Y R, GUO Y Y. Numerical simulation method of hypersonic flow and its application[M]. Beijing: Science Press, 2019 (in Chinese). | |
5 | 艾邦成. 临近空间高超声速飞行器计算空气动力学[M]. 北京: 科学出版社, 2020: 8-15. |
AI B C. Computational aerodynamics of near-space hypersonic vehicle[M]. Beijing: Science Press, 2020: 8-15 (in Chinese). | |
6 | 李灿民, 黄河峡, 梁钢, 等. 基于后掠唇罩的入射激波/边界层干扰流动控制方法研究[J]. 航空学报, 2023, 44(16): 128091. |
LI C M, HUANG H X, LIANG G, et al. On the flow control method for impinging shock/boundary-layer interaction based on swept-back cowl configuration[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 128091 (in Chinese). | |
7 | 郭庆阳. 高超声速飞行器级间分离非定常数值研究[D]. 长沙: 国防科学技术大学, 2012. |
GUO Q Y. The unsteady numerical simulation Research on the stage separation of Hypersonic vehicle [D].Changsha: National University of Defense Technology, 2012 (in Chinese). | |
8 | ZHU S Q, CHEN Z H, ZHANG H, et al. Investigations on the influence of control devices to the separation characteristics of a missile from the internal weapons bay[J]. Journal of Mechanical Science and Technology, 2018, 32(5): 2047-2057. |
9 | 王粤, 汪运鹏, 王春, 等. 一种并联两级入轨飞行器纵向分离方案的数值研究[J]. 航空学报, 2023, 44(11): 127634-127634. |
WANG Y, WANG Y P, WANG C, et al. Numerical study of longitudinal stage separation for parallel-staged two-stage-to-orbit vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 127634-127634 (in Chinese). | |
10 | MALMUTH N, SHALAEV A, FESOROV A, Combined asymptotic and numerical methods in transonic store interactions[R]. Thousand Oaks: Rockwell Science Co., 2002. |
11 | MALMUTH N, SHALAEV A, FESOROV A, Mathematical fluid dynamics of store and stage separation[R]. Thousand Oaks: Rockwell Science Co.,2005. |
12 | 钱锟. F-22A武器和外挂载荷分离飞行试验[J]. 国际航空, 2008(3): 24-27. |
QIAN K. F-22A’s weapon system and store separation flight test[J]. International Aviation, 2008(3): 24-27 (in Chinese). | |
13 | 钱锟, 孔维梁. F—35武器系统和载荷分离飞行试验的预先研究[J]. 国际航空, 2009(12): 64-68. |
QIAN K, KONG W L. F-35 store separation studies prior to fligh test[J]. International Aviation, 2009(12): 64-68 (in Chinese). | |
14 | 宋威, 艾邦成. 多体分离动力学研究进展[J]. 航空学报, 2022, 43(9): 025950. |
SONG W, AI B C. Multibody separation dynamics: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 025950 (in Chinese). | |
15 | 宋威, 鲁伟, 蒋增辉, 等. 内埋武器高速风洞弹射投放模型试验关键技术研究[J]. 力学学报, 2018, 50(6): 1346-1355. |
SONG W, LU W, JIANG Z H, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1346-1355 (in Chinese). | |
16 | 宋威, 艾邦成, 蒋增辉, 等. 内埋武器投放分离相容性的风洞投放试验预测与评估[J]. 航空学报, 2020, 41(6): 523415. |
SONG W, AI B C, JIANG Z H, et al. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523415 (in Chinese). | |
17 | 董金刚, 张晨凯, 谢峰, 等. 内埋武器超声速分离机弹干扰特性试验研究[J]. 实验流体力学, 2021, 35(3): 46-51. |
DONG J G, ZHANG C K, XIE F, et al. Experimental investigations on the separation interference characteristics of supersonic internal weapon releasing from the aircraft[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51 (in Chinese). | |
18 | 林敬周, 王雄, 钟俊, 等. 高马赫数多体分离试验技术研究与应用[J]. 推进技术, 2020, 41(4): 925-933. |
LIN J Z, WANG X, ZHONG J, et al. Investigation and application of high Mach number multi-body separation test technique[J]. Journal of Propulsion Technology, 2020, 41(4): 925-933 (in Chinese). | |
19 | 钟俊, 林敬周, 解福田, 等. 高超声速大动压下整流罩分离测力风洞试验[J]. 实验流体力学, 2022, doi: 10.11729/syltlx20210194 . |
ZHONG J, LIN J Z, XIE F T, et al. Wind tunnel force test of fairing separation in hypersonic and high dynamic pressure situation[J]. Journal of Experiments in Fluid Mechanics, 2022, doi: 10.11729/syltlx20210194 (in Chinese). | |
20 | 蒋增辉, 宋威, 贾区耀, 等. 多体分离风洞自由飞试验[J]. 空气动力学学报, 2016, 34(5): 581-586. |
JIANG Z H, SONG W, JIA Q Y, et al. Wind tunnel free-flight test for multi-bodies separation[J]. Acta Aerodynamica Sinica, 2016, 34(5): 581-586 (in Chinese). | |
21 | 杨俊, 张新慧. 内埋武器重力分离特性分析[J]. 航空科学技术, 2017, 28(9): 10-15. |
YANG J, ZHANG X H. Analysis on gravity separation characteristics for internal store[J]. Aeronautical Science & Technology, 2017, 28(9): 10-15 (in Chinese). | |
22 | 李骞, 杨俊, 谢云恺, 等. 超声速内埋武器不同分离方式分析[J]. 航空计算技术, 2014, 44(5): 69-72. |
LI Q, YANG J, XIE Y K, et al. Simulation of different separation modes of internal weapon at supersonic speed[J]. Aeronautical Computing Technique, 2014, 44(5): 69-72 (in Chinese). | |
23 | 赵飞, 刘丽玲, 石泳, 等. 类X-43A飞行器高超声速分离仿真[J]. 航空学报, 2022, 43(5): 125171. |
ZHAO F, LIU L L, SHI Y, et al. Hypersonic separation simulation of aerocraft similar to X-43A[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 125171 (in Chinese). | |
24 | 孙佳濛, 左光, 徐艺哲, 等. 临近空间高超声速飞行器武器投放方案数值模拟[J]. 航空学报, 2023, 44(13): 127808. |
SUN J M, ZUO G, XU Y Z, et al. Numerical simulation of weapon delivery schemes for hypersonic vehicles in near space[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127808 (in Chinese). | |
25 | DURBIN P A, PETTERSSON REIF B A. Statistical theory and modeling for turbulent flows[M]. 2nd edition. New York: John Wiley & Sons, Ltd., 2011. |
26 | WILCOX D C. Turbulence modeling for CFD[M]. 2nd ed. La C?nada: DCW Industries, 1998. |
27 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
28 | MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]∥MCCALLEN R, BROWAND F, ROSS J. The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Berlin, Heidelberg: Springer, 2004: 339-352. |
29 | MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[C]∥Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer. Danbury: Begell House, 2003: 625-632. |
30 | LOUPY G J M, BARAKOS G N, TAYLOR N J. Store release trajectory variability from weapon bays using scale-adaptive simulations[J]. AIAA Journal, 2018, 56(2): 752-764. |
31 | 美国国家海洋和大气局. 标准大气: 美国, 1976[M]. 任现, 钱志民, 译. 北京: 科学出版社, 1982: 2-16. |
National Oceanic and Atmospheric Administration. Standard atmosphere: USA, 1976[M]. REN X, QIAN Z M, translated. Beijing: Science Press, 1982: 2-16 (in Chinese). | |
32 | HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment[R]. Tennessee: Arnold Engineering Development Center, 1991, |
/
〈 |
|
〉 |