Special Topic: Vibration Identification and Suppression Technology of Aeroengine

Multiple optimization based virtual assembly balance of multi-disk rotors considering multi-speed

  • Yulin GUO ,
  • Fengyu YANG ,
  • Jianfei YAO ,
  • Shiwen JIAO ,
  • Zeliang ZHANG
Expand
  • 1.School of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China
    2.Key Laboratory of Engine Health Monitoring-Control and Networking of Ministry of Education,Beijing University of Chemical Technology,Beijing 100029,China
    3.Beijing Key Laboratory of High-end Mechanical Equipment Health Monitoring and Self-Recovery,Beijing University of Chemical Technology,Beijing 100029,China
    4.AECC Guiyang Engine Design Research Institute,Guiyang 550081,China

Received date: 2022-11-28

  Revised date: 2023-02-13

  Accepted date: 2023-03-09

  Online published: 2023-03-17

Supported by

National Natural Science Foundation of China(51975037)

Abstract

A multiple optimization method for virtual assembly balance of multi-disk rotors with multi-speed is proposed to meet the requirement of precise rotor vibration suppression in engine assembly. We establish a simulation model of the multi-disk rotor test rig, through which the virtual assembly is conducted, with known magnitude and phase of the residual unbalance of each stage disk and the original rotor vibration. Taking the residual vibration of each measuring point of the rotor and the overall unbalanced force and moment as the optimization objectives, the multiple optimization algorithm is used to find the optimization scheme of the mounting angle in each stage of the assembled disks. Experiments are performed on the test rig of the three-disk rotor system. The results show that this method can reduce the rotor vibration in a wide speed range with a maximum reduction of 85.75%. This study provides important methodological and technical support for engine rotor assembly.

Cite this article

Yulin GUO , Fengyu YANG , Jianfei YAO , Shiwen JIAO , Zeliang ZHANG . Multiple optimization based virtual assembly balance of multi-disk rotors considering multi-speed[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 628323 -628323 . DOI: 10.7527/S1000-6893.2023.28323

References

1 YU P C, ZHANG D Y, MA Y H, et al. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out[J]. Mechanical Systems and Signal Processing2018106: 158-175.
2 ZHANG C, YANG J M, CHANG Z Y. Balancing of planar mechanisms and engine dynamics[M]∥Machinery dynamics. Amsterdam: Elsevier, 2022: 19-53.
3 SUN W, LI T, YANG D J, et al. Dynamic investigation of aeroengine high pressure rotor system considering assembly characteristics of bolted joints[J]. Engineering Failure Analysis2020112: 104510.
4 刘洪慧, 刘亮, 李明华, 等. 多级盘转子装配不平衡量预测与优化[J]. 机械科学与技术202241(8): 1298-1305.
  LIU H H, LIU L, LI M H, et al. Prediction and optimization of assembly unbalance of multi-stage disc rotor[J]. Mechanical Science and Technology for Aerospace Engineering202241(8): 1298-1305 (in Chinese).
5 LI L L, CHEN K, GAO J M, et al. Research on optimizing-assembly and optimizing-adjustment technologies of aero-engine fan rotor blades[J]. Advanced Engineering Informatics202251: 101506.
6 BIN G F, LI X J, SHEN Y P, et al. Development of whole-machine high speed balance approach for turbomachinery shaft system with N+1 supports[J]. Measurement2018122: 368-379.
7 WANG A M, CHENG X H, MENG G Y, et al. Dynamic analysis and numerical experiments for balancing of the continuous single-disc and single-span rotor-bearing system[J]. Mechanical Systems and Signal Processing201786: 151-176.
8 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报202243(10): 527484.
  ZHAO G, LI J Y, XU M C, et al. Research status and prospect of key aero-engine assembly technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527484 (in Chinese).
9 王梦瑶, 袁奇, 冀大伟, 等. 百万核电套装转子高速动平衡优化方案研究[J]. 热力透平201645(4): 284-289.
  WANG M Y, YUAN Q, JI D W, et al. High-speed dynamic balance optimization method of a shrunk-on rotor for 1000MW nuclear power turbine[J]. Thermal Turbine201645(4): 284-289 (in Chinese).
10 李洪亮, 王红海, 初世明, 等. 基于遗传算法的汽轮机转子多级叶片不平衡量优化方法研究[J]. 热能动力工程202237(2): 33-37.
  LI H L, WANG H H, CHU S M, et al. Optimization method of multi-stage blade unbalance in steam turbine rotor based on genetic algorithm[J]. Journal of Engineering for Thermal Energy and Power202237(2): 33-37 (in Chinese).
11 琚奕鹏, 吴法勇, 金彬, 等. 基于转子跳动和初始不平衡量优化的多级盘转子结构装配工艺[J]. 航空发动机201844(6): 83-90.
  JU Y P, WU F Y, JIN B, et al. Structure assembly technique of multi-stage disc rotor based on rotor runout and unbalance optimization[J]. Aeroengine201844(6): 83-90 (in Chinese).
12 杜海雷, 孙惠斌, 黄健, 等. 面向装配精度的航空发动机转子零件选配优化[J]. 计算机集成制造系统202127(5): 1292-1299.
  DU H L, SUN H B, HUANG J, et al. Optimizing aero-engine rotor part matching considering assembly accuracy[J]. Computer Integrated Manufacturing Systems202127(5): 1292-1299 (in Chinese).
13 MEI Y J, SUN C Z, LI C T, et al. Research on intelligent assembly method of aero-engine multi-stage rotors based on SVM and variable-step AFSA-BP neural network[J]. Advanced Engineering Informatics202254: 101798.
14 WANG X M, CAO Z F, SUN C Z, et al. Positioning and orientation error measurement and assembly coaxiality optimization in rotors with curvic couplings[J]. Measurement2021186: 110167.
15 COLLEDANI M, YEMANE A, COUPEK D, et al. Quality-oriented design of rotor assembly strategies for electric drive production systems[J]. Procedia CIRP201536: 141-146.
16 JIN S, DING S Y, LI Z M, et al. Point-based solution using Jacobian-Torsor theory into partial parallel chains for revolving components assembly[J]. Journal of Manufacturing Systems201846: 46-58.
17 肖平欢. 航空发动机多级盘片分离转子不平衡量优化装配方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
  XIAO P H. Research on the optimal assembly method for the unbalanced quantity of the multi-stage rotor with separate disk and blades of aeroengine[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese).
18 丁司懿, 金隼, 李志敏, 等. 航空发动机转子装配同心度的偏差传递模型与优化[J]. 上海交通大学学报201852(1): 54-62.
  DING S Y, JIN S, LI Z M, et al. Deviation propagation model and optimization of concentricity for aero-engine rotor assembly[J]. Journal of Shanghai Jiao Tong University201852(1): 54-62 (in Chinese).
19 李琳, 刘浩, 朱林波, 等. 航空发动机高压转子关键装配参数仿真分析[J]. 航空制造技术202265(12): 72-76.
  LI L, LIU H, ZHU L B, et al. Simulation analysis on crucial assembly parameter of high pressure rotor in aero-engine[J]. Aeronautical Manufacturing Technology202265(12): 72-76 (in Chinese).
20 ZHOU T Y, GAO H. Modeling and simulation of the assembly accuracy of aero-engine rotors in the docking processes using a specially designed novel multi-DOF NC motion platform[J]. Aerospace Science and Technology2021113: 106648.
21 LIU Y M, ZHANG M W, SUN C Z, et al. A method to minimize stage-by-stage initial unbalance in the aero engine assembly of multistage rotors[J]. Aerospace Science and Technology201985: 270-276.
22 MU X K, WANG Y L, YUAN B, et al. A new assembly precision prediction method of aeroengine high-pressure rotor system considering manufacturing error and deformation of parts[J]. Journal of Manufacturing Systems202161: 112-124.
23 HONG J, YANG Z F, WANG Y F, et al. Combination resonances of rotor systems with asymmetric residual preloads in bolted joints[J]. Mechanical Systems and Signal Processing2023183: 109626.
24 HOLLAND J H. Adaptation in natural and artificial systems[M]. London: The MIT Press, 1992.
Outlines

/