ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A robust control method for close formation of aerial-refueling UAVs
Received date: 2022-12-23
Revised date: 2023-02-13
Accepted date: 2023-03-10
Online published: 2023-03-10
Supported by
Natural Science Foundation of Sichuan Province(2023NSFSC1428)
This paper proposes a distributed robust formation control method based on adaptive disturbance observers with the barrier function for the robust control problem of aerial-refueling UAV close formation systems. A simplified model of the second-order multi-agent system with unmatched and matched disturbances is constructed by transforming the fixed-wing UAV outer-loop dynamics model, and the adaptive disturbance observer of the corresponding channel is designed based on the barrier function. The consensus error function is defined by using the neighboring aircraft state information, and on this basis, distributed robust controllers for aerial-refueling UAV close formation systems are developed to achieve the ideal heterogeneous UAV formation tracking control performance based on the communication topology of the formation system and the introduction of disturbance compensation mechanism. According to the Lyapunov stability theory, the stability and convergence of the closed-loop system are analyzed. Finally, the proposed scheme is verified by implementing into a formation system consisting of one refueling aircraft and two fuel-receiving aircraft of different types for numerical simulation. The simulation results are consistent with the theoretical analysis, which confirms the effectiveness of the designed disturbance observer and controller.
Xinyu ZHANG , Siyu XIE , Yang TAO , Gun LI . A robust control method for close formation of aerial-refueling UAVs[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(20) : 628425 -628425 . DOI: 10.7527/S1000-6893.2023.28425
1 | 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J]. 航空学报, 2014, 35(9): 2375-2389. |
LU Y P, YANG C X, LIU Y Y. A survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2375-2389 (in Chinese). | |
2 | VALASEK J, FAMULARO D, MARWAHA M. Fault-tolerant adaptive model inversion control for vision-based autonomous air refueling[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(6): 1336-1347. |
3 | 吴慈航, 闫建国, 钱先云, 等. 受油机指定时间姿态稳定控制[J]. 航空学报, 2022, 43(2): 324996. |
WU C H, YAN J G, QIAN X Y, et al. Predefined-time attitude stabilization control of receiver aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 324996 (in Chinese). | |
4 | 邹泉, 华艺欣, 邵翥, 等. 自主空中加油能力需求及关键评价指标分析[J/OL]. 系统仿真学报: 1-11.(2022-10-08)[2022-12-22]. . |
ZOU Q, HUA Y X, SHAO Z, et al. Analysis of Autonomous Aerial Refueling Capability Requirements and Key Evaluation Indicators[J]. Journal of System Simulation, 2022: 1-11. (2022-10-08)[2022-12-22]. (in Chinese). | |
5 | KENT T E, RICHARDS A G. Analytic approach to optimal routing for commercial formation flight[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(10): 1872-1884. |
6 | 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报, 2014, 35(9): 2390-2410. |
QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2390-2410 (in Chinese). | |
7 | 徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报, 2020, 41(8): 323722. |
XU B, ZHANG D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323722 (in Chinese). | |
8 | ZHANG Q R, LIU H H T. Robust nonlinear close formation control of multiple fixed-wing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(3): 572-586. |
9 | PACHTER M, D’AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 246-254. |
10 | DOGAN A, VENKATARAMANAN S. Nonlinear control for reconfiguration of unmanned-aerial-vehicle formation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 667-678. |
11 | HANSON C E, PAHLE J, REYNOLDS J R, et al. Experimental measurements of fuel savings during aircraft wake surfing[C]∥ Proceedings of the 2018 Atmospheric Flight Mechanics Conference. Reston: AIAA, 2018. |
12 | PROUD A, PACHTER M, D'AZZO J. Close formation flight control[C]∥ Proceedings of the Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 1999. |
13 | SINGH S N, PACHTER M, CHANDLER P, et al. Input-output invertibility and sliding mode control for close formation flying of multiple UAVs[J]. International Journal of Robust and Nonlinear Control, 2000, 10(10): 779-797. |
14 | GALZI D, SHTESSEL Y. Closed-coupled formation flight control using quasi-continuous high-order sliding-mode[C]∥ 2007 American Control Conference. Piscataway: IEEE Press, 2007: 1799-1804. |
15 | BINETTI P, ARIYUR K B, KRSTIC M, et al. Formation flight optimization using extremum seeking feedback[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 132-142. |
16 | 朱旭, 张逊逊, 尤谨语, 等. 基于信息一致性的无人机紧密编队集结控制[J]. 航空学报, 2015, 36(12): 3919-3929. |
ZHU X, ZHANG X X, YOU J Y, et al. Swarm control of UAV close formation based on information consensus[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3919-3929 (in Chinese). | |
17 | BRODECKI M, SUBBARAO K. Autonomous formation flight control system using In-flight sweet-spot estimation[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1083-1096. |
18 | ZHANG Q R. Modeling, analysis, and control of close formation flight[D]. Toronto, Ontario, Canada: University of Toronto, 2019. |
19 | THOMAS P R, BULLOCK S, RICHARDSON T S, et al. Collaborative control in a flying-boom aerial refueling simulation[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(7): 1274-1289. |
20 | 刘博 孟中杰. 软管连接约束下的加油机/无人机编队跟踪控制[J].航空学报,2023. doi: 10.7527/S1000-6893.2022.28210 . |
LIU B, MENG Z. Tanker/UAV formation tracking control with hose connection constraints[J]. Acta Aeronautica et Astronautica Sinica, 2023. doi: 10.7527/S1000-6893.2022.28210 (in Chinese). | |
21 | ZHANG X Y, LI H, LI G, et al. Barrier function based finite-time tracking control for a class of uncertain nonlinear systems with input saturation[J]. International Journal of Robust and Nonlinear Control, 2022, 32(1): 83-100. |
22 | DU H B, CHEN M Z Q, WEN G H. Leader–following attitude consensus for spacecraft formation with rigid and flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 944-951. |
23 | ZHU B, ZHANG Q R, LIU H H T. Design and experimental evaluation of robust motion synchronization control for multivehicle system without velocity measurements[J]. International Journal of Robust and Nonlinear Control, 2018, 28(17): 5437-5463. |
24 | LIU S, XIE L H, LEWIS F L. Synchronization of multi-agent systems with delayed control input information from neighbors[J]. Automatica, 2011, 47(10): 2152-2164. |
25 | MORELLI E A. Global nonlinear parametric modelling with application to F-16 aerodynamics[C]∥ Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207). Piscataway: IEEE Press, 2002: 997-1001. |
26 | KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. 3rd. Upper Saddle River, NJ: Prentice Hall, 2002. |
/
〈 |
|
〉 |