Special Topic: Vibration Identification and Suppression Technology of Aeroengine

Fan rotor local balancing method based on real data inversion

  • Lifang CHEN ,
  • Yabing SUN ,
  • Shuhua ZHOU ,
  • Qiang GAO ,
  • Baodong QIAO ,
  • Dong LI
Expand
  • 1.Ministry of Education Key Laboratory of Engine Health Monitoring-Control and Networking,Beijing University of Chemical Technology,Beijing 100029,China
    2.State Key Laboratory of High-End Compressor and System Technology,Beijing University of Chemical Technology,Beijing 100029,China
    3.AECC Shenyang Engine Research Institute,Shenyang 110015,China

Received date: 2022-11-28

  Revised date: 2023-02-13

  Accepted date: 2023-03-06

  Online published: 2023-03-10

Supported by

National Natural Science Foundation of China(51775030)

Abstract

A fan rotor local balancing method based on the model and real dynamic balancing data inversion is proposed to address the phenomena of difficult fan rotor phase monitoring, complex vibration transmission paths, large variability of dynamic characteristics of different machines, and low dynamic balancing efficiency. The data inversion model is first constructed and the inversion characteristic parameters determined by decomposing the fan rotor vibration transmission path. The real dynamic balance data is then used to invert the performance to match the key characteristic parameter Kcs(casing to pivot point 1 dynamic stiffness) of each machine. Finally, the linear matrix equation of casing vibration response, characteristic parameter Kcsand rotor unbalance is established based on the inversion theory to realize the inverse operation of rotor unbalance. This method is verified by the field dynamic balancing of fan rotors, which can achieve 100% vibration suppression in the given speed range, and the vibration suppression ratio reaches 43%—68%, significantly improving the dynamic balancing efficiency.

Cite this article

Lifang CHEN , Yabing SUN , Shuhua ZHOU , Qiang GAO , Baodong QIAO , Dong LI . Fan rotor local balancing method based on real data inversion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 628321 -628321 . DOI: 10.7527/S1000-6893.2023.28321

References

1 王辰, 左彦飞, 江志农, 等. 全转速系数矩阵降维重构的燃机不平衡量逆推方法[J]. 航空学报202041(11): 223670.
  WANG C, ZUO Y F, JIANG Z N, et al. A backstepping method of gas turbine unbalance vector based on dimension reduction and reconstruction of full speed coefficient matrix[J]. Acta Aeronautica et Astronautica Sinica202041(11): 223670 (in Chinese).
2 冯坤, 朱振桥, 左彦飞, 等. 薄壁机匣发动机轴承位置不平衡响应矢量逆推方法[J]. 振动与冲击202039(16): 89-95.
  FENG K, ZHU Z Q, ZUO Y F, et al. A reverse method of unbalance response at bearing position of thin-walled casing engines[J]. Journal of Vibration and Shock202039(16): 89-95 (in Chinese).
3 孙贵青, 丁一明, 龙洋, 等. 大涵道比涡扇发动机风扇平衡工艺分析[J]. 航空科学技术202233(10): 24-30.
  SUN G Q, DING Y M, LONG Y, et al. Fan balance analysis on high bypass ratio turbofan aeroengine[J]. Aeronautical Science & Technology202233(10): 24-30 (in Chinese).
4 ZHANG Z X, ZHANG C Y, WAN K D, et al. An improved whole-machine balancing method based on double auto-correlation measurement[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2018232(4): 612-620.
5 BIN G F, LI X J, SHEN Y P, et al. Development of whole-machine high speed balance approach for turbomachinery shaft system with N+1 supports[J]. Measurement2018122: 368-379.
6 吴元东, 娄金伟, 范顺昌, 等. 某型发动机风扇转子本机平衡试验研究[J]. 航空发动机201844(6): 74-78.
  WU Y D, LOU J W, FAN S C, et al. Experimental investigation of local balancing for aeroengine fan rotor[J]. Aeroengine201844(6): 74-78 (in Chinese).
7 夏存江. 基于直角坐标的在翼航空发动机风扇三圆配平方法研究[J]. 燃气涡轮试验与研究201528(3): 59-62.
  XIA C J. Research of fan trim balance for on-wing aircraft engines based on a rectangular coordinate system[J]. Gas Turbine Experiment and Research201528(3): 59-62 (in Chinese).
8 葛向东, 高强, 路阳, 等. 风扇转子动特性试验与分析[J]. 航空发动机202046(2): 66-70.
  GE X D, GAO Q, LU Y, et al. Test and analysis of dynamic characteristic of fan rotor[J]. Aeroengine202046(2): 66-70 (in Chinese).
9 BHENDE A R. A new rotor balancing method using amplitude subtraction and its performance analysis with phase angle measurement-based rotor balancing method[J]. Australian Journal of Mechanical Engineering202018(1): 112-118.
10 姜广义, 王德友, 焦业秋. 大型发动机转子本机平衡技术试验研究[J]. 航空发动机200834(1): 19-22, 6.
  JIANG G Y, WANG D Y, JIAO Y Q. Experimentd investigation of local balanced technique for large aeroengine rotor[J]. Aeroengine200834(1): 19-22, 6 (in Chinese).
11 刘钢旗, 郑龙席, 梅庆, 等. 一种跨二阶柔性转子无试重模态平衡方法[J]. 航空学报201435(4): 1019-1025.
  LIU G Q, ZHENG L X, MEI Q, et al. Balancing method of flexible rotor across second order without trial weights[J]. Acta Aeronautica et Astronautica Sinica201435(4): 1019-1025 (in Chinese).
12 周瑾, 王玉龙, 郭勤涛. 基于动平衡机有限元模型的无试重动平衡方法[J]. 江苏大学学报(自然科学版)201334(1): 72-75.
  ZHOU J, WANG Y L, GUO Q T. Dynamic balance method without trial weight based on finite element model of dynamic balancer[J]. Journal of Jiangsu University (Natural Science Edition)201334(1): 72-75 (in Chinese).
13 章云, 王晓宇, 梅雪松. 高速转子无试重动平衡方法研究现状分析[J]. 振动与冲击202241(21): 216-227.
  ZHANG Y, WANG X Y, MEI X S. Studying status review for high-speed rotor dynamic balancing method without trial weights[J]. Journal of Vibration and Shock202241(21): 216-227 (in Chinese).
14 李志炜, 何立东, 张俎琛, 等. 虑及双转速双平面无试重虚拟动平衡研究[J]. 机电工程201936(9): 969-974.
  LI Z W, HE L D, ZHANG Z C, et al. Test-free virtual dynamic balance in consideration of double-rotation double-plane[J]. Journal of Mechanical & Electrical Engineering201936(9): 969-974 (in Chinese).
15 傅超, 任兴民, 杨永锋, 等. 基于加速不平衡响应的柔性转子无试重动平衡[J]. 西北工业大学学报201735(5): 898-904.
  FU C, REN X M, YANG Y F, et al. Balancing of flexible rotors based on accelerating unbalance response without trial weights[J]. Journal of Northwestern Polytechnical University201735(5): 898-904 (in Chinese).
16 KHULIEF Y A, MOHIUDDIN M A, EL-GEBEILY M. A new method for field-balancing of high-speed flexible rotors without trial weights[J]. International Journal of Rotating Machinery20142014: 1-11.
17 宾光富, 李学军, 沈意平, 等. 基于动力学有限元模型的多跨转子轴系无试重整机动平衡研究[J]. 机械工程学报201652(21): 78-86.
  BIN G F, LI X J, SHEN Y P, et al. Whole-machine dynamic balancing method without trial weights for multi-span rotor shafting based on dynamic finite element model[J]. Journal of Mechanical Engineering201652(21): 78-86 (in Chinese).
18 王维民, 高金吉, 江志农, 等. 旋转机械无试重现场动平衡原理与应用[J]. 振动与冲击201029(2): 212-215, 232.
  WANG W M, GAO J J, JIANG Z N, et al. Principle and application of no trial weight field balancing for a rotating machinery[J]. Journal of Vibration and Shock201029(2): 212-215, 232 (in Chinese).
19 陈立芳, 晏资文, 李栋, 等. 一种基于粒子群优化的无键相虚拟动平衡算法研究[J]. 机电工程202138(4): 421-427, 446.
  CHEN L F, YAN Z W, LI D, et al. Virtual dynamic balancing algorithm without OPR signal based on particle swarm optimization[J]. Journal of Mechanical & Electrical Engineering202138(4): 421-427, 446 (in Chinese).
20 唐宇航, 王雪仁, 李欣. 变频激励响应分析及模态阻尼反演理论研究[J]. 船舶力学201923(11): 1339-1350.
  TANG Y H, WANG X R, LI X. Variable frequency excitation response analysis and inverse theory research of modal damping[J]. Journal of Ship Mechanics201923(11): 1339-1350 (in Chinese).
21 应广驰, 孟光, 荆建平. 基于频响函数反演法的涡轮增压器基础激励辨识[J]. 振动与冲击200726(11): 70-75, 184.
  YING G C, MENG G, JING J P. Foundation excitation idetification of turbocharger’s vibration response based on frequency response function inversion method[J]. Journal of Vibration and Shock200726(11): 70-75, 184 (in Chinese).
22 艾伯特 . 塔兰托拉. 反演理论:数据拟合及模型参数估算方法[M]. 张先康, 译. 北京:学术书刊出版社, 1989: 2-5.
  TARANTOLA A. Inverse problem theory and methods for model parameter estimation[M]. ZHANG X K, translated. Beijing: Academic Books and Periodicals Press, 1989: 2-5 (in Chinese).
23 王晓峰, 徐可君, 秦海勤. 航空发动机风扇转子试验器动力学特性研究[J]. 动力学与控制学报201715(2): 142-148.
  WANG X F, XU K J, QIN H Q. Study on dynamic characteristics of aeroengine fan rotor tester[J]. Journal of Dynamics and Control201715(2): 142-148 (in Chinese).
24 曾振坤, 张大义, 黄巍, 等. 径向支承刚度非对称转子系统振动特性分析[J]. 推进技术202243(2): 256-265.
  ZENG Z K, ZHANG D Y, HUANG W, et al. Analysis of vibration characteristics of rotor system with asymmetric radial support stiffness[J]. Journal of Propulsion Technology202243(2): 256-265 (in Chinese).
25 BHARTI S K, BISOI A, SINHA A, et al. Sommerfeld effect at forward and backward critical speeds in a rigid rotor shaft system with anisotropic supports[J]. Journal of Sound and Vibration2019442: 330-349.
26 JUNG H C, KRUMDIECK S. Rotordynamic modelling and analysis of a radial inflow turbine rotor-bearing system[J]. International Journal of Precision Engineering and Manufacturing201415(11): 2285-2290.
27 袁胜, 邓旺群, 徐友良, 等. 小型涡扇发动机低压转子临界转速随支承刚度和悬臂长度的变化规律研究[J]. 燃气涡轮试验与研究201831(5): 35-39.
  YUAN S, DENG W Q, XU Y L, et al. Change laws of critical speed with supporting stiffness and cantilever length of a low pressure rotor for a small turbofan engine[J]. Gas Turbine Experiment and Research201831(5): 35-39 (in Chinese).
Outlines

/