ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Airfoil parameterization method based on CST⁃GAN
Received date: 2022-11-28
Revised date: 2023-01-09
Accepted date: 2023-02-23
Online published: 2023-03-10
Supported by
Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research(614220121010117)
Airfoil parameterization method plays a very important role in airfoil manufacturing, aerodynamic and stealth optimization design. To further enhance the representation capability of the airfoil parameterization method, avoid abnormal geometric shapes during the optimization process, and improve the efficiency of airfoil optimization design, in this paper, first, based on the existing airfoil databases, we propose a new airfoil parameterization method: CST-GAN, which combines more flexible Class and Shape Transformation (CST) method and Generative Adversarial Network (GAN) model where latent data distribution can be learnt. Then, the effect of design dimension on CST-GAN airfoil parameterization is studied by examining the geometric quality and representation error of the generated airfoils. Moreover, the representation accuracy of CST-GAN is compared with that of Bezier, B-spline, and Principal Component Analysis (PCA) method. Finally, airfoil optimization design based on the proposed parametrization method is conducted. The results show that the proposed method can generate smooth and effective geometric shapes and describe the airfoil shape more precisely. Compared with other commonly used parameterization methods, the CST-GAN method exhibits faster optimization convergence speed and better optimization results, which contributes to optimization efficiency improvement and computational cost saving. In addition, the proposed method is robust and easy to implement, with potential applications to parametric modeling and aerodynamic optimization design of three-dimensional wings and the entire aircraft.
Jiehua TIAN , Di SUN , Feng QU , Junqiang BAI . Airfoil parameterization method based on CST⁃GAN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(18) : 128280 -128280 . DOI: 10.7527/S1000-6893.2023.28280
1 | 韩忠华, 张瑜, 许晨舟, 等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1): 522398. |
HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522398 (in Chinese). | |
2 | 耿延升, 艾梦琪, 王伟, 等. 高效层流翼型设计及试验验证[J]. 航空学报, 2022, 43(11): 112-122. |
GENG Y S, AI M Q, WANG W, et al. Efficient design and experimental verification of laminar airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 112-122 (in Chinese). | |
3 | 袁吉森, 孙爵, 李玲玉, 等. 超声速飞机层流布局设计与评估技术进展[J]. 航空学报, 2022, 43(11): 526316. |
YUAN J S, SUN J, LI L Y, et al. Progress of supersonic aircraft laminar flow layout design and evaluation technologies[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526316 (in Chinese). | |
4 | 王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015, 36(2): 449-461. |
WANG X, CAI J S, QU K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 449-461 (in Chinese). | |
5 | 李嘉, 韩小宝, 李华聪, 等. 基于改进Bezier曲线的复合叶轮式离心泵参数化设计及性能仿真[J]. 推进技术, 2022, 43(7): 394-403. |
LI J, HAN X B, LI H C, et al. Parametric design and simulation for an aero-fuel centrifugal pump with compound impeller based on improved bezier-curve[J]. Journal of Propulsion Technology, 2022, 43(7): 394-403 (in Chinese). | |
6 | 张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法[J]. 航空学报, 2020, 41(10): 123815. |
ZHANG W, GAO Z H, ZHOU L, et al. Adaptive parameterization method for surrogate-based global optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123815 (in Chinese). | |
7 | 陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014, 35(3): 695-705. |
CHEN S, BAI J Q, SUN Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695-705 (in Chinese). | |
8 | 陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3): 300-307. |
CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization and design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3): 300-307 (in Chinese). | |
9 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
10 | SHAN S Q, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 219-241. |
11 | QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4): 643-659. |
12 | VISWANATH A, FORRESTER A I J, KEANE A J. Constrained design optimization using generative topographic mapping[J]. AIAA Journal, 2014, 52(5): 1010-1023. |
13 | GREY Z J, CONSTANTINE P G. Active subspaces of airfoil shape parameterizations[J]. AIAA Journal, 2018, 56(5): 2003-2017. |
14 | 王娜娜, 解青, 苏星宇, 等. 湍流燃烧机理和调控的活性子空间分析方法[J]. 航空学报, 2021, 42(12): 625228. |
WANG N N, XIE Q, SU X Y, et al. Active subspace methods for analysis and optimization of turbulent combustion[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625228 (in Chinese). | |
15 | 杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报, 2023, 44(1): 626992. |
YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626992 (in Chinese). | |
16 | 张威, 王强, 路嘉晨, 等. 基于PCA-HicksHenne方法的几何不确定性稳健优化设计[J]. 北京航空航天大学学报, 2022, 48(12): 2473-2481. |
ZHANG W, WANG Q, LU J C, et al. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481 (in Chinese). | |
17 | WU X J, ZHANG W W, PENG X H, et al. Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerospace Science and Technology, 2019, 84: 632-640. |
18 | 吴则良, 叶建川, 王江, 等. 基于深度自动编码器神经网络的飞行器翼型参数降维与优化设计[J]. 兵工学报, 2022, 43(6): 1326-1336. |
WU Z L, YE J C, WANG J, et al. Parameter dimensionality reduction and optimal design of aircraft airfoil based on deep autoencoder neural network[J]. Acta Armamentarii, 2022, 43(6): 1326-1336 (in Chinese). | |
19 | CHEN W, CHIU K, FUGE M D. Airfoil design parameterization and optimization using Bézier generative adversarial networks[J]. AIAA Journal, 2020, 58(11): 4723-4735. |
20 | DU X S, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
21 | 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633. |
GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 625-633 (in Chinese). | |
22 | 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3): 804-818. |
SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 804-818 (in Chinese). | |
23 | KULFAN B, BUSSOLETTI J. “Fundamental” parameteric geometry representations for aircraft component shapes[C]∥ Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006. |
24 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
25 | 吴秋雨. 基于生成式对抗网络的气动外形优化方法研究[D]. 成都: 电子科技大学, 2021: 20-21. |
WU Q Y. Research on aerodynamic shape optimization method based on generative adversarial network[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 20-21 (in Chinese). | |
26 | CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[DB/OL]. arXiv preprint: 1606.03657, 2016. . |
27 | KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv preprint: 1412.6980, 2014. |
28 | Gretton A, Borgwardt K M, Rasch M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13(1): 723-773. |
29 | ANTUNES A P, AZEVEDO J L F. Studies in aerodynamic optimization based on genetic algorithms[J]. Journal of Aircraft, 2014, 51(3): 1002-1012. |
30 | DRELA M. XFOIL: An analysis and design system for low Reynolds number airfoils[C]∥MUELLER TJ. Low Reynolds number aerodynamics. Berlin: Springer, 1989: 1-12. |
31 | 王超. 基于代理模型的高效气动优化与高维多目标问题研究[D]. 西安: 西北工业大学, 2018: 57-58. |
WANG C. Research on surrogate-based efficient aerodynamic optimization and many-objective problems[D]. Xi’an: Northwestern Polytechnical University, 2018: 57-58 (in Chinese). |
/
〈 |
|
〉 |