ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A routing strategy for LEO satellite network based on space⁃time⁃level
Received date: 2022-09-13
Revised date: 2022-11-23
Accepted date: 2023-02-10
Online published: 2023-03-03
Supported by
National Natural Science Foundation of China(U21B2003)
With the development of 5G technology and the research of 6G technology, the LEO satellite network will play an increasingly important role in the future integrated air-space-ground network. However, the routing strategy as the core technology of the network still faces some challenges, such as high dynamic changes in satellite network topology, frequent switching of paths, limited computing and processing capacity of nodes, and unbalanced load and traffic distribution. Aiming at the problem of unbalanced load in the area covered by the satellite and related to time factors, and the multi-service QoS requirements of users on the satellite, this paper designs a space-time-level-based service classification load balancing routing algorithm. The algorithm considers the relationship between the distribution of satellite network traffic and the space-time level. The satellite node needs to solve its space-time level according to the current moment and the ground area it covers. In the next hop real-time adjustment stage of the routing algorithm, the space-time level is added as one of the routing conditions. At the same time, the calculation method of the threshold is improved, and different link weights are considered when routing to meet the multi-service QoS requirements. The simulation results show that, compared with the DSP algorithm, the TLR algorithm and RMLBR algorithm, although the algorithm in this paper is not as good as the TLR and RMLBR algorithm in terms of total throughput, the delay and ISL utilization have been improved, which effectively reduces the average end-to-end delay, better meets the QoS requirements of different services, and balances the network load.
Key words: LEO satellite network; load balance; QoS; routing algorithm; space-time factors
Debin WEI , Yu CAO , Li YANG , Chengsheng PAN . A routing strategy for LEO satellite network based on space⁃time⁃level[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(16) : 327994 -327994 . DOI: 10.7527/S1000-6893.2023.27994
1 | 陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络:组网技术与研究现状[J]. 通信学报, 2022, 43(5): 177-189. |
CHEN Q, YANG L, GUO J M, et al. LEO mega- constellation network :technologies and state of the art[J]. Journal on Communications, 2022, 43(5): 177- 189 (in Chinese). | |
2 | SU Y T, LIU Y Q, ZHOU Y Q, et al. Broadband LEO satellite communications: architectures and key technologies[J]. IEEE Wireless Communications, 2019, 26(2): 55-61. |
3 | 潘成胜,行贵轩,戚耀文,等. 多状态空间信息网络拓扑生成优化算法[J]. 航空学报, 2020, 41(4):323546. |
PAN C S, XING G X, QI Y W, et al. Topology generation and optimization method in multi-state space information network[J]. Acta Aeronautica et Sinica, 2020, 41(4):323546 (in Chinese). | |
4 | WERNER M. A dynamic routing concept for ATM-based satellite personal communication networks[J]. IEEE Journal on Selected Areas in Communications, 1997, 15(8): 1636-1648. |
5 | CHANG H S, KIM B W, LEE C G, et al. Topological design and routing for low-earth orbit satellite networks[C].∥Proceedings of GLOBECOM ’95. Singapore: IEEE, 1995: 529-535. |
6 | CHANG H S, KIM B W, LEE C G, et al. FSA-based link assignment and routing in low-earth orbit satellite networks[J]. IEEE Transactions on Vehicular Technology, 1998, 47(3): 1037-1048. |
7 | EKICI E, AKYILDIZ I F, BENDER M D, et al. A distributed routing algorithm for datagram traffic in LEO satellite networks[J]. IEEE/ACM Transactions on Networking, 2001, 9(2): 137-147. |
8 | AKYILDIZ I F, EKICI E, BENDER M D, et al. MLSR: A novel routing algorithm for multilayered satellite IP networks[J]. IEEE/ACM Transactions on Networking, 2002, 10(3): 411-424. |
9 | CHEN J, JAMALIPOUR A. An adaptive path routing scheme for satellite IP networks[J]. International Journal of Communication Systems, 2003, 16(1): 5-21. |
10 | TALEB T, MASHIMO D, JAMALIPOUR A, et al. Explicit load balancing technique for NGEO satellite IP networks with on-board processing capabilities[J]. IEEE/ACM Transactions on Networking, 2009, 17(1): 281-293. |
11 | KORCAK ?, ALAGOZ F, JAMALIPOUR A, et al. Priority-based sdaptive shortest path routing in NGEO satellite networks[J]. International Journal of Communication Systems, 2007, 20(3): 313-333. |
12 | FISCHER D, BASIN D, ECKSTEIN K, et al. Predictable mobile routing for spacecraft networks[J]. IEEE Transactions on Mobile Computing, 2013, 6(6): 1174-1187. |
13 | CONG L G, YANG H M, WANG Y H, et al. A multi-objective routing algorithm based on auction game for space information network[J]. Tehni?ki Vjesnik, 2020, 27(3): 697-702. |
14 | LIU Z G, ZHU J, ZHANG J M, et al. Routing algorithm design of satellite network architecture based on SDN and ICN[J]. International Journal of Satellite Communications and Networking, 2020, 38(1): 1-15. |
15 | 邢川, 陈二虎, 韩笑冬. 基于动静结合方法的卫星网络路由方法研究[J]. 空间控制技术与应用, 2020, 46(3): 55-59. |
XING C, CHEN E H, HAN X D, et al. Static-dynamic routing algorithm in satellite constellation network[J]. Aerospace control and application, 2020, 46(3): 55- 59 (in Chinese). | |
16 | 梁超,杨力,潘成胜,等. 卫星网络动态资源图多QoS约束路由算法[J]. 航空学报,2022,43(9): 326422. |
LIANG C, YANG L, PAN C S, et al. Multi-QoS constrains routing algorithm based on satellite network dynamic resource graph[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 326422 (in Chinese). | |
17 | ZHOU Y, XIE Z C, et al. Inter-satellite load balancing routing algorithm for LEO satellite constellation based on regional-traffic-detour[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(5): 687-695. |
18 | SONG G H, CHAO M Y, YANG B W, et al. TLR:A Traffic-Light-based intelligent routing strategy for NGEO satellite IP networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3380-3393. |
19 | 柏倩. 基于不确定理论的卫星网络负载均衡路由策略研究[D]. 南京: 南京邮电大学, 2020: 27-33. |
BAI Q. Research on load balancing routing strategy based on uncertainty theory in satellite network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020: 27-33 (in Chinese). | |
20 | NA Z Y, PAN Z, LIU X, et al. Distributed routing strategy based on machine learning for LEO satellite network[J]. Wireless Communications and Mobile Computing, 2018(3-4): 1-10. |
21 | BAI J J, LU X C, LU Z X, et al. Compact explicit multi-path routing for LEO satellite networks[C]∥2005 Workshop on High Performance Switching and Routing. Piscataway: IEEE Press, 2005: 386-390. |
22 | 饶元,王汝传,林萍. ns2中的基于移动Agent卫星网路由算法仿真[J]. 东南大学学报(自然科学版), 2008(S1): 21-24. |
RAO Y, WANG C R, LIN P, et al. Satellite network routing algorithm based on mobile agent simulated in ns2[J]. Journal of Southeast University (Natural Science Edition), 2008(S1): 21-24 (in Chinese). | |
23 | 饶元. 基于代理的LEO卫星网动态路由技术研究[D]. 南京: 南京邮电大学, 2011: 34-37. |
RAO Y. Research on agent-based low earth orbit satellite network dynamic routing[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2011: 34- 37 (in Chinese). |
/
〈 |
|
〉 |