ACTA AERONAUTICAET ASTRONAUTICA SINICA >
X-ray telescope for pulsar deep space reference and its development vision
Received date: 2021-11-02
Revised date: 2021-11-26
Accepted date: 2021-12-29
Online published: 2023-02-15
Supported by
National Natural Science Foundation of China(42004004);National Key Basic Research and Development Plan(2020YFB0505801)
Deep space reference is the basis for entering and utilizing space. X-ray telescopes are important observation equipment for constructing pulsar deep space reference. Firstly, the role of pulsar timing in the establishment of deep space reference is discussed, and the requirements of millisecond pulsar space observation on X-ray telescopes are qualitatively analyzed. Then the technical status and development trend of X-ray telescopes at home and abroad are systematically summarized. Secondly, considering the fact that the pulse signal is generally weak and the non-pulse signal and spatial dispersion background are strong in X-ray millisecond pulsar observation, a method for suppressing the non-pulse noise by using high-resolution imaging observation is proposed. A high-resolution low-noise X-ray telescope is then preliminarily designed. Finally, the effects of different pulse signal flow, non-pulse signal flow, angular resolution and lens reflection efficiency on the signal-to-noise ratio during the pulsar observation obtained by focusing imaging, focusing non-imaging and collimating non-imaging X-ray telescopes are analyzed. It is found that the focusing imaging X-ray telescope has better detection ability in the flow of weak pulse signal and strong non-pulse signal. The calculation result also shows that the detection sensitivity of the focusing imaging telescope is better than that of the X-ray Timing Instrument (XTI) of the Neutron star Interior Composition Explorer (NICER) under the same conditions during the observation of five navigation pulsars. It can be seen that the designed focusing imaging X-ray telescope can effectively improve the observation ability of millisecond X-ray pulsars, and provide time service for national comprehensive Positioning, Navigation & Timing(PNT)and the construction of deep space reference system.
Qingyong ZHOU , Ziqing WEI , Yaohu LEI , Siwei LIU , Xiaolong HAO , Fumei WU , Yanji YANG , Pengfei QIANG . X-ray telescope for pulsar deep space reference and its development vision[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526608 -526608 . DOI: 10.7527/S1000-6893.2021.26608
1 | 任红飞, 魏子卿, 刘思伟, 等. 国内外深空基准发展现状与启示[J]. 测绘科学与工程, 2020(3): 8-15. |
REN H F, WEI Z Q, LIU S W, et al. Development status and enlightenment of the deep space datum at home and abroad[J]. Geomatics Science and Engineering, 2020(3): 8-15 (in Chinese). | |
2 | 王小军, 汪小卫. 载人火星探测任务构架及其航天运输系统研究[J]. 中国航天, 2021(7): 8-14. |
WANG X J, WANG X W. Human Mars exploration mission architecture and corresponding space transportation system[J]. Aerospace China, 2021(7): 8-14 (in Chinese). | |
3 | 潘永信, 王赤. 国家深空探测战略可持续发展需求:行星科学研究[J]. 中国科学基金, 2021, 35(2): 181-185. |
PAN Y X, WANG C. Developing the planetary science research for the sustainable deep space exploration of China[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(2): 181-185 (in Chinese). | |
4 | 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10. |
YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018(10): 4-10 (in Chinese). | |
5 | HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature, 1968, 217(5130): 709-713. |
6 | DOWNS G. Interplanetary navigation using pulsating radio sources: N74-34150 [R]. Washington, D.C.: NASA, 1974. |
7 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation [D].Maryland: University of Maryland, 2005: 159-175. |
8 | 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 1-28. |
ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015: 1-28 (in Chinese). | |
9 | ANDREW L, FRANCIG S. Pulsar astronomy [M]. 3rd ed. London: Cambridge University Press, 2006: 50-89. |
10 | 周庆勇, 刘思伟, 郝晓龙, 等. 空间X射线观测确定脉冲星星历表参数精度分析[J]. 物理学报, 2016, 65(7): 368-377. |
ZHOU Q Y, LIU S W, HAO X L, et al. Analysis of measurement accuracy of ephemeris parameters for pulsar navigation based on the X-ray space observation[J]. Acta Physica Sinica, 2016, 65(7): 368-377 (in Chinese). | |
11 | 周庆勇, 魏子卿, 闫林丽, 等. 面向综合定位导航授时系统的天地基脉冲星时间研究[J]. 物理学报, 2021, 70(13): 471-483. |
ZHOU Q Y, WEI Z Q, YAN L L, et al. Space/ground based pulsar timescale for comprehensive PNT system[J]. Acta Physica Sinica, 2021, 70(13): 471-483 (in Chinese). | |
12 | 费保俊. 相对论在现代导航中的应用[M]. 2版. 北京: 国防工业出版社, 2015: 206-232. |
FEI B J. Application of relativity in modern navigation[M]. 2nd ed. Beijing: National Defense Industry Press, 2015: 206-232 (in Chinese). | |
13 | 周庆勇. 脉冲星计时模型和自转稳定性研究[D]. 郑州: 解放军信息工程大学, 2011: 1-155. |
ZHOU Q Y. Research on pulsar timing model and stability of spin behaviors[D]. Zhengzhou: PLA Information Engineering University, 2011: 1-155 (in Chinese). | |
14 | 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学, 2019, 49(1): 1-16. |
WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Scientia Sinica (Informationis), 2019, 49(1): 1-16 (in Chinese). | |
15 | RAY P, SHEIKH S, GRAVEN P, et al. Deep space navigation using celestial X-ray sources[EB/OL]. (2008-01-30)[2021-12-26]. ,_ION_NTM_January_2008.pdf. |
16 | DAVE B. Overview of the XNAV program X-ray navigation using celestial sources[C]∥20th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2006: 1-11. |
17 | 黄良伟. 基于计时模型的X射线脉冲星自主导航理论与算法研究[D]. 北京: 清华大学, 2013: 1-14. |
HUANG LW. Theory and algorithm study in X-ray pulsar autonomous navigation based on pulsar timing model[D]. Beijing: Tsinghua University, 2013: 1-14 (in Chinese). | |
18 | NASA. 2015 NASA technology roadmaps TA5 communications naviation and orbital debris tracking and characterization syatems[EB/OL]. (2015-08-10)[2021-12-26]. . |
19 | ARZOUMANIAN Z, GENDREAU K C, BAKER C L, et al. The neutron star interior composition explorer (NICER): Mission definition[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 2014: 579-587. |
20 | MITCHELL J W, WINTERNITZ L B, HASSOUNEH M A, et al. SEXTANT X-ray pulsar navigation demonstration: Initial on-orbit results[C]∥41st Annual Guidance and Control Conference of American Astronautical Society, 2018: 1-12. |
21 | PEARLMAN A B, MAJID W A, PRINCE T A. Observations of radio magnetars with the deep space network[J]. Advances in Astronomy, 2019, 2019: 6325183. |
22 | KOCZ J, MAJID W, WHITE L, et al. Pulsar timing at the deep space network[DB/OL]. ArXiv preprint: 1703.01342, 2017. |
23 | STUPL J, EBERT M, MAURO D, et al. CubeX: A compact X-Ray telescope enables both X-Ray fluorescence imaging spectroscopy and pulsar timing based navigation[C]∥32nd Annual AIAA/USU Conference on Small Satellites, Reston: AIAA, 2018. |
24 | DENEVA J S, RAY P S, LOMMEN A, et al. High-precision X-ray timing of three millisecond pulsars with NICER: Stability estimates and comparison with radio[DB/OL]. ArXiv preprint: 1902.07130, 2019. |
25 | PRIZ R, GARBIN E, ROLDN P, et al. PulChron: A pulsar time scale demonstration for PNT systems[C]∥Proceedings of the 50th Annual Precise Time and Time Interval Systems and Applications Meeting. Institute of Navigation, 2019. |
26 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[DB/OL]. ArXiv preprint: 1908.01922, 2019. |
27 | HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 018003. |
28 | 王奕迪. 深空探测中的X射线脉冲星导航方法研究[D]. 长沙: 国防科学技术大学, 2011: 57-81. |
WANG Y D. Research on the X-ray pulsar-based navigation in deep space exploration[D]. Changsha: National University of Defense Technology, 2011: 57-81 (in Chinese). | |
29 | HOBBS G, GUO L, CABALLERO R N, et al. A pulsar-based time-scale from the international pulsar timing array[J]. Monthly Notices of the Royal Astronomical Society, 2019, 491(4): 5951-5965. |
30 | 周庆勇, 魏子卿, 张华, 等. 基于双谱滤波的综合脉冲星时算法研究[J]. 天文学报, 2021, 62(2): 88-97. |
ZHOU Q Y, WEI Z Q, ZHANG H, et al. Research on ensemble pulsar time algorithm based on bispectral filter[J]. Acta Astronomica Sinica, 2021, 62(2): 88-97 (in Chinese). | |
31 | 杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(8):1006-1012. |
YANG Y X, YANG C, REN X. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021(8):1006-1012 (in Chinese). | |
32 | 谢军, 刘庆军, 边朗. 基于北斗系统的国家综合定位导航授时(PNT)体系发展设想[J]. 空间电子技术, 2017, 14(5): 1-6. |
XIE J, LIU Q J, BIAN L. Development assumption of national comprehensive PNT architecture based on BeiDou navigation satellite system[J]. Space Electronic Technology, 2017, 14(5): 1-6 (in Chinese). | |
33 | SHEMAR S, FRASER G, HEIL L, et al. Towards practical autonomous deep-space navigation using X-ray pulsar timing[J]. Experimental Astronomy, 2016, 42(2): 101-138. |
34 | 廖颖宇. 成像式X射线望远镜用模拟程序编写与测试方法研究[D]. 上海: 同济大学, 2020: 2-19 |
LIAO Y Y. Study on simulation program preparation and test method for imaging X-ray telescope [D]. Shanghai: Tongji University, 2020: 2-19 (in Chinese). | |
35 | KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766-774. |
36 | WOLTER V H. Mirror systems with glancing incidence on imaging producing optics for X-ray[J]. Annals of Physics, 1952, 6(10): 94-114. |
37 | PETRE R, SERLEMITSOS P J. Conical imaging mirrors for high-speed X-ray telescopes[J]. Applied Optics, 1985, 24(12): 1833. |
38 | SERLEMITSOS P J. Conical foil X-ray mirrors: Performance and projections[J]. Applied Optics, 1988, 27(8): 1447-1452. |
39 | SCHMIDT W K H. A proposed X-ray focusing device with wide field of view for use in X-ray astronomy[J]. Nuclear Instruments and Methods, 1975, 127(2): 285-292. |
40 | FRASER G W, CARPENTER J D, ROTHERY D A, et al. The mercury imaging X-ray spectrometer (MIXS) on bepicolombo[J]. Planetary and Space Science, 2010, 58(1-2): 79-95. |
41 | GIACCONI R, BRANDUARDI G, BRIEL U, et al. The Einstein/HEAO 2/X-ray observatory[J]. The Astrophysical Journal Letters, 1979, 230: 540. |
42 | UBERTINI P, GEHRELS N, CORBETT I, et al. Future of space astronomy: A global road map for the next decades[J]. Advances in Space Research, 2012, 50(1): 1-55. |
43 | 张双南. 我国空间天文发展的现状和展望[J]. 中国科学: 物理学 力学 天文学, 2012, 42(12): 1308-1320. |
ZHANG S N. Current status and future outlook of the development of China’s space astronomy[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(12): 1308-1320 (in Chinese). | |
44 | 吴伯冰, 马宇蒨, 张双南, 等. 中国空间天文40周年[J]. 空间科学学报, 2021(1): 84-94. |
WU B B, MA Y Q, ZHANG S N, et al. 40 years of space astronomy in China[J]. Chinese Journal of Space Science, 2021(1): 84-94 (in Chinese). | |
45 | O’DELL S L, BRISSENDEN R J, DAVIS W N, et al. High-resolution X-ray telescopes[J]. Adaptive X-Ray Optics, 2010, 7803: 862315 |
46 | YOUNG P S. Fabrication of the high-resolution mirror assembly for the HEAO-2 X-ray telescope[C]∥Proc SPIE 0184, Space Optics Imaging X-Ray Optics Workshop, 1979: 131-138. |
47 | DE KORTE P A J, BLEEKER J A M, DEN BOGGENDE A J F, et al. The X-ray imaging telescopes on exosat[J]. Space Science Reviews, 1981, 30(1): 495-511. |
48 | SERLEMITSOS P J, JALOTA L, SOONG Y. The X-ray telescope on board ASCA[J]. Publications of the Astronomical Society of Japan, 1995, 47: 105-114. |
49 | TANAKA Y, INOUE H, HOLT S S. The X-ray astronomy satellite ASCA[J]. Publications of the Astronomical Society of Japan, 1994, 46(3): L37-L41. |
50 | PIRO L. Scientific capabilities and performances of the BeppoSAX mission[J]. Nuclear Physics B - Proceedings Supplements, 1999, 69(1-3): 3-11. |
51 | WEISSKOPF M C. Chandra X-ray optics[J]. Optical Engineering, 2012, 51(1): 011013. |
52 | LUMB D H. X-ray multi-mirror mission (XMM-Newton) observatory[J]. Optical Engineering, 2012, 51(1): 011009. |
53 | ASCHENBACH B, BRIEL U G, HABERL F, et al. Imaging performance of the XMM-Newton X-ray telescopes[C]∥Astronomical Telescopes and Instrumentation. Proc SPIE 4012, X-Ray Optics, Instruments, and Missions III, 2000, 4012: 731-739. |
54 | GONDOIN P, ASCHENBACH B, BEIJERSBERGEN M W, et al. Calibration of the first XXM flight mirror module: II. Effective area[C]∥SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 3444, X-Ray Optics, Instruments, and Missions, 1998, 3444: 290-301. |
55 | BURROWS D N, HILL J E, NOUSEK J A, et al. The swift X-ray telescope[J]. Space Science Reviews, 2005, 120(3): 165-195. |
56 | TAGLIAFERRI G, MORETTI A, CAMPANA S, et al. Swift XRT effective area measured at the Panter end-to-end tests[C]∥Optical Science and Technology, SPIE's 48th Annual Meeting. Proc SPIE 5165, X-Ray and Gamma-Ray Instrumentation for Astronomy XIII, 2004, 5165: 241-250. |
57 | SERLEMITSOS P J, SOONG Y, CHAN K W, et al. The X-ray telescope onboard suzaku[J]. Publications of the Astronomical Society of Japan, 2007, 59(S1): S9-S21. |
58 | MADSEN K K, HARRISON F A, MARKWARDT C, et al. Calibration of the NuSTAR high energy focusing Xray telescope[DB/OL]. ArXiv preprint: 1504.01672, 2015. |
59 | CHRISTENSEN F E, JAKOBSEN A C, BREJNHOLT N F, et al. Coatings for the NuSTAR mission[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147, Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011, 8147: 298-316. |
60 | HARRISON F A, CRAIG W W, CHRISTENSEN F E, et al. The nuclear spectroscopic telescope array (NuSTAR) mission[DB/OL]. ArXiv preprint: 1301.7307, 2013. |
61 | SINGH K P, TANDON S N, AGRAWAL P C. Astrosat mission[J]. Proceedings of SPIE, 2014, 9144: 91441S. |
62 | TAKAHASHI T, MITSUDA K, KELLEY R, et al. The ASTRO-H X-ray observatory[J]. Proceedings of SPIE, 2012, 8443: 84431Z. |
63 | TAKAHASHI T, KOKUBUN M, MITSUDA K, et al. The Astro-H (Hitomi) X-ray astronomy satellite[J]. Proceedings of SPIE, 2016, 9905: 99050U. |
64 | SHI Y Q, MEI Z W, HE Y, et al. Ground calibration and in-orbit performance of the time-resolved soft X-ray spectrometer on board XPNAV-1[J]. Proceedings of SPIE, 2020, 6(3): 034006. |
65 | GENDREAU K C, ARZOUMANIAN Z, OKAJIMA T. The Neutron star Interior Composition ExploreR (NICER): An explorer mission of opportunity for soft X-ray timing spectroscopy[C]∥SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 2012: 322-329. |
66 | FRIEDRICH P, BRAUNINGER H, BUDAU B, et al. Design and development of the eROSITA X-ray mirrors[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7011, Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 2008: 853-860. |
67 | DENNERL K, ANDRITSCHKE R, BOHRINGER H, et al. The calibration of eROSITA on SRG[J]. Proceedings of SPIE, 2020, 11444: 114444Q. |
68 | PAVLINSKY M, LEVIN V, AKIMOV V, et al. ART-XC overview[J]. Proceedings of SPIE, 2018, 10699:106991Y. |
69 | PAVLINSKY M, TKACHENKO A, LEVIN V, et al. The ART-XC telescope on board the SRG observatory[DB/OL]. ArXiv preprint: 2103.12479, 2021. |
70 | BONGIORNO S D, KOLODZIEJCZAK J J, KILARU K, et al. Assembly of the IXPE mirror modules[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 189-200. |
71 | RAMSEY B D, ATTINA P, BALDINI L, et al. The Imaging X-Ray Polarimetry Explorer (IXPE): Technical overview IV[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11821, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 2021: 225-236. |
72 | MERCIER K, GONZALEZ F, GOTZ D, et al. MXT instrument on-board the French-Chinese SVOM mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 505-519. |
73 | FELDMAN C H, WILLINGALE R, PEARSON J, et al. Calibration of a fully populated lobster eye optic for SVOM[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 2020: 182-194. |
74 | ZHANG J, QI L Q, YANG Y J, et al. Estimate of the background and sensitivity of the follow-up X-ray telescope onboard Einstein Probe[J]. Astroparticle Physics, 2022, 137: 102668. |
75 | CHEN Y, CUI W W, HAN D W, et al. Status of the follow-up X-ray telescope onboard the Einstein Probe satellite[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 2020: 885-893. |
76 | BASSO S, CIVITANI M, PARESCHI G, et al. Mirror module design of X-ray telescopes of eXTP mission[J]. Proceedings of SPIE, 2019, 11119: 1111904. |
77 | ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29502. |
78 | SHEN Z X, YU J, MA B, et al. Current progress of X-ray multilayer telescope optics based on thermally slumping glass for eXTP mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018, 10699: 269-280. |
79 | SOFFITTA P, BARCONS X, BELLAZZINI R, et al. XIPE: The X-ray imaging polarimetry explorer[J]. Experimental Astronomy, 2013, 36(3): 523-567. |
80 | RAY P S, ARZOUMANIAN Z, BRANDT S, et al. STROBE-X: A probe-class mission for X-ray spectroscopy and timing on timescales from microseconds to years[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 249-268. |
81 | MUSHOTZKY R F, AIRD J, BARGER A J, et al. The advanced X-ray imaging satellite[DB/OL]. arXiv preprint: 1903.04083, 2019. |
82 | BAVDAZ M, WILLE E, AYRE M, et al. ATHENA X-ray optics development and accommodation[C]∥SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 32-46. |
83 | COLLON M J, VACANTI G, GUNTHER R, et al. Silicon pore optics for the ATHENA telescope[J]. Proceedings of SPIE, 2016, 9905: 990528. |
84 | JESSICA A, GASKIN, DOUGLAS A, et al. Lynx X-ray observatory: An overview[J]. Journal of Astronomical Telescopes Instruments and Systems, 2019, 5(2): 021001. |
85 | NASA Marshall Space Flight Center. Lynx X-ray observatory concept study report [EB/OL] [2021-11-01] (2021-12-20). . |
86 | SANTANGELO A, MADONIA R. Fifty years of X-ray astronomy: A look back and into the (near) future[J]. Astroparticle Physics, 2014, 53: 130-151. |
87 | CIVITANI M M, PARODI G, TOSO G, et al. Progress on high-resolution thin full monolithic shells made of glass for Lynx[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 11822: 243-257. |
88 | TENDULKAR M, LIU T N, KIRCHNER-HALL N, et al. Process development for adjustable X-ray mirrors[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 198-205. |
89 | 赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016: 10-85. |
ZHAO D C. Study on design and processing technology of soft X-ray grazing incidence light collection system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016: 10-85 (in Chinese). | |
90 | 强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报, 2019, 68(16): 158-163. |
QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica, 2019, 68(16): 158-163 (in Chinese). | |
91 | 王波, 杨彦佶, 王殿龙, 等. X射线聚焦镜的超精密制造[J]. 光学精密工程, 2021, 29(8): 1839-1846. |
WANG B, YANG Y J, WANG D L, et al. Ultra-precision manufacture of X-ray focusing mirror[J]. Optics and Precision Engineering, 2021, 29(8): 1839-1846 (in Chinese). | |
92 | 袁为民, 张臣, 陈勇, 等. 爱因斯坦探针: 探索变幻多姿的X射线宇宙[J]. 中国科学: 物理学 力学 天文学, 2018, 48(3): 6-25. |
YUAN W M, ZHANG C, CHEN Y, et al. Einstein probe: Exploring the ever-changing X-ray universe[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(3): 6-25 (in Chinese). | |
93 | 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 63-71. |
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 63-71 (in Chinese). | |
94 | 吴明轩. 基于全反射理论的微孔光学阵列设计方法[D]. 北京:北京空间机电研究所,2015: 2-25. |
WU M X. Design method of microporous optical array based on total reflection theory[D]. Beijing: Beijing Institute of space mechatronics, 2015: 2-25 (in Chinese). | |
95 | LOWE B G, HOLLAND A D, HUTCHINSON I B, et al. The swept charge device, a novel CCD-based EDX detector: First results[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1-2): 568-579. |
96 | 王绶琯, 周又元. X射线天体物理学[M]. 北京: 科学出版社, 1999: 76-112. |
WANG S G, ZHOU Y Y. X-ray astrophysics[M]. Beijing: Science Press, 1999: 76-112 (in Chinese). | |
97 | 徐延庭, 宫超林, 胡慧君, 等. 脉冲星MCP探测器设计与在轨验证[J]. 航天器工程, 2018, 27(5): 114-119. |
XU Y T, GONG C L, HU H J, et al. Design and in-orbit verification of MCP detector for pulsar[J]. Spacecraft Engineering, 2018, 27(5): 114-119 (in Chinese). | |
98 | 黄北举, 张赞, 张赞允, 等. 硅基光电子与微电子单片集成研究进展[J]. 微纳电子与智能制造, 2019, 1(3): 55-67. |
HUANG B J, ZHANG Z, ZHANG Z Y, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(3): 55-67 (in Chinese). | |
99 | 王兴军, 苏昭棠, 周治平. 硅基光电子学的最新进展[J]. 中国科学: 物理学 力学 天文学, 2015, 45(1): 15-45. |
WANG X J, SU Z T, ZHOU Z P. Recent progress of silicon photonics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(1): 15-45 (in Chinese). | |
100 | 薛佳琦, 赵晓帆, 崔苇苇, 等. 高速X射线SCD探测器数据获取系统设计[J]. 核电子学与探测技术, 2019, 39(3): 290-296. |
XUE J Q, ZHAO X F, CUI W W, et al. Design and research of data acquisition system for X-ray SCD detector[J]. Nuclear Electronics & Detection Technology, 2019, 39(3): 290-296 (in Chinese). | |
101 | 杨彦佶. CCD型X射线探测器性能研究[D]. 长春: 吉林大学, 2014: 4-30. |
YANG Y J. The study on the performance of X-ray CCDs[D]. Changchun: Jilin University, 2014: 4-30 (in Chinese). | |
102 | ROWAN D M, GHAZI Z, LUGO L, et al. A NICER view of spectral and profile evolution for three X-ray emitting millisecond pulsars[DB/OL]. arXiv preprint: 2001.11513, 2020. |
/
〈 |
|
〉 |