ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical simulation and experiment of ventilated cloud cavitation on underwater vehicle under vertical emission conditions
Received date: 2023-01-03
Revised date: 2023-01-29
Accepted date: 2023-02-15
Online published: 2023-02-24
Supported by
National Natural Science Foundation of China(U20B2005)
To study the flow characteristics of the ventilated cloud cavitation under vertical emission conditions, an Improved Delayed Detached Eddy Simulation (IDDES) model is used to conduct non-constant numerical simulations with the underwater vehicle as the research object. The introduction of hybrid scale accelerates the Reynolds Average Navier-Stokes (RANS) to Large Eddy Simulation (LES) conversion calculation and improves the calculation accuracy of turbulent stresses. A vertically constrained underwater launch platform was built, and the development process of ventilated cloud cavitation was studied using the quantitative exhaust method, while the validity of the numerical method was verified. It was found that the gas-liquid interface was destabilized under the action of vortex flow. After that, part of the water phase converged through the gas-liquid interface into the ventilated cavitation, and gas-liquid mixing occurred to form cloud cavitation. The evolution of cloud cavitation is a dynamic development process, where size expansion and gas-liquid admixture are simultaneous.
Zeyu REN , Xiaogang WANG , Shaohua CHENG , Xiaobo QUAN . Numerical simulation and experiment of ventilated cloud cavitation on underwater vehicle under vertical emission conditions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 528450 -528450 . DOI: 10.7527/S1000-6893.2022.28450
1 | 刘涛涛, 黄彪, 王国玉, 等. 垂直发射水下航行体的通气空化数值模拟研究[J]. 宇航总体技术, 2017, 1(4): 22-28. |
LIU T T, HUANG B, WANG G Y, et al. Numerical investigation of ventilated cavitating flows around a vertical underwater-launched projectile[J]. Astronautical Systems Engineering Technology, 2017, 1(4): 22-28 (in Chinese). | |
2 | 任泽宇, 孙龙泉, 姚熊亮, 等. 凹槽参数对通气空泡融合的影响[J]. 宇航总体技术, 2021, 5(3): 28-36. |
REN Z Y, SUN L Q, YAO X L, et al. Influence of groove parameters on ventilated bubble fusion[J]. Astronautical Systems Engineering Technology, 2021, 5(3): 28-36 (in Chinese). | |
3 | QIN S J, WU Y, WU D Z, et al. Experimental investigation of ventilated partial cavitation[J]. International Journal of Multiphase Flow, 2019, 113: 153-164. |
4 | GANESH H, M?KIHARJU S A, CECCIO S L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities[J]. Journal of Fluid Mechanics, 2016, 802: 37-78. |
5 | 高远, 黄彪, 吴钦, 等. 绕水翼空化流动及振动特性的实验研究[J]. 力学学报, 2015, 47(6): 1009-1016. |
GAO Y, HUANG B, WU Q, et al. Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016 (in Chinese). | |
6 | 吴汪霞, 王兵, 王晓亮, 等. 非等强度多道冲击波作用下空泡溃灭机制分析[J]. 航空学报, 2021, 42(12): 625894. |
WU W X, WANG B, WANG X L, et al. Mechanism of cavity collapse induced by multiple shock waves of different strengths[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625894 (in Chinese). | |
7 | 孙龙泉, 任泽宇, 李志鹏, 等. 波浪作用下水下航行体出水成功概率预报[J]. 国防科技大学学报, 2022, 44(5): 134-141. |
SUN L Q, REN Z Y, LI Z P, et al. Prediction of probability of successful water-exit for underwater vehicles under wave action [J]. Journal of National University of Defense Technology, 2022, 44(5): 134-141 (in Chinese). | |
8 | 王路遥, 黄滨, 秦世杰, 等. 通气空腔压力分布对平板阻力影响研究[J]. 工程热物理学报, 2020, 41(11): 2711-2718. |
WANG L Y, HUANG B, QIN S J, et al. The investigation of influence of air cavity’s pressure distribution on plate’s drag[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2711-2718 (in Chinese). | |
9 | 秦世杰. 平板通气减阻两相流动与阻力特性研究[D]. 杭州: 浙江大学, 2019. |
QIN S J. Study on two-phase flow behavior and resistance feature of air lubrication drag reduction beneath flat plate [D].Hangzhou: Zhejiang University, 2019 (in Chinese). | |
10 | 付细能, 张敏弟, 邵峰, 等. 平板通气气液两相流流动的实验研究[J]. 船舶力学, 2014, 18(): 12-18. |
FU X N, ZHANG M D, SHAO F, et al. Experimental study of ventilated two-phase flows on a plane[J]. Journal of Ship Mechanics, 2014, 18(S1): 12-18 (in Chinese). | |
11 | 吕亚飞, 张孟杰, 刘涛涛, 等. 平板近壁面双孔通气气液两相流场的数值模拟研究[J]. 数字海洋与水下攻防, 2021, 4(4): 279-287. |
LV Y F, ZHANG M J, LIU T T, et al. Numerical simulation study on gas-liquid two-phase flow field of double-hole ventilation near the wall of flat plate[J]. Digital Ocean & Underwater Warfare, 2021, 4(4): 279-287 (in Chinese). | |
12 | LI Z P, SUN L Q, XIAO W, et al. Three-dimensional numerical analysis of near-wall single-orifice ventilated bubble dynamics[J]. Ocean Engineering, 2019, 186: 106066. |
13 | LI Z P, SUN L Q, YAO X L, et al. Three-dimensional numerical analysis of horizontal and vertical coalescence of bubbles at two submerged horizontal orifices on the wall[C]∥Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2019. |
14 | LI Z P, SUN L Q, YAO X L, et al. Numerical investigation of axisymmetric bubble dynamics from a submerged circumferential slit on the cylinder[J]. International Journal of Multiphase Flow, 2020, 125: 103213. |
15 | 张孝石, 王聪, 张耐民, 等. 通气航行体表面压力脉动特性实验研究[J]. 振动与冲击, 2017, 36(17): 85-90. |
ZHANG X S, WANG C, ZHANG N M, et al. Tests for pressure fluctuating characteristics around a ventilated underwater vehicle[J]. Journal of Vibration and Shock, 2017, 36(17): 85-90 (in Chinese). | |
16 | 张孝石, 王聪, 魏英杰, 等. 航行体云状空泡稳定性通气控制[J]. 哈尔滨工业大学学报, 2017, 49(8): 152-157. |
ZHANG X S, WANG C, WEI Y J, et al. Gas control on the ventilated cavitation stability around an underwater vehicle[J]. Journal of Harbin Institute of Technology, 2017, 49(8): 152-157 (in Chinese). | |
17 | 刘影, 段忠平, 刘涛涛, 等. 绕空化器回转体通气空泡流态特征实验研究[J]. 哈尔滨工程大学学报, 2021, 42(1): 74-81. |
LIU Y, DUAN Z P, LIU T T, et al. Experimental investigation of the ventilated cavitating flow around the axisymmetric body of a disk cavitator[J]. Journal of Harbin Engineering University, 2021, 42(1): 74-81 (in Chinese). | |
18 | WANG Z Y, HUANG B, ZHANG M D, et al. Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics[J]. International Journal of Multiphase Flow, 2018, 98: 79-95. |
19 | 黄彪, 黄瀚锐, 刘涛涛, 等. 通气空泡流动特性研究现状及进展[J]. 空气动力学学报, 2020, 38(4): 724-745. |
HUANG B, HUANG H R, LIU T T, et al. Research progress and prospects of ventilated cavitating flows characteristics[J]. Acta Aerodynamica Sinica, 2020, 38(4): 724-745 (in Chinese). | |
20 | 陈浮, 马贵辉, 程少华, 等. 直、斜孔排气对航行体绕流流动影响: Part 1——流场结构[J]. 工程热物理学报, 2016, 37(3): 507-513. |
CHEN F, MA G H, CHENG S H, et al. Effect of straight or inclined hole exhaust on flow around underwater vehicle: Part 1—Flow field structure[J]. Journal of Engineering Thermophysics, 2016, 37(3): 507-513 (in Chinese). | |
21 | 陈浮, 马贵辉, 鲍文春, 等. 直、斜孔排气对航行体绕流流动影响: Part 2——流体动力特性[J]. 工程热物理学报, 2016, 37(9): 1845-1849. |
CHEN F, MA G H, BAO W C, et al. Effect of straight or inclined hole exhaust on flow around underwater vehicle: Part 2—Hydrodynamic characteristics[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1845-1849 (in Chinese). | |
22 | SUN L Q, LI W P, MA G H, et al. Study on ventilated cavity uncertainty of the vehicle under stochastic conditions based on the Monte Carlo method[J]. Ocean Engineering, 2021, 239: 109789. |
23 | 赵蛟龙, 郭百森, 孙龙泉, 等. 细长体倾斜出水的实验研究[J]. 爆炸与冲击, 2016, 36(1): 113-120. |
ZHAO J L, GUO B S, SUN L Q, et al. Experimental study on oblique water-exit of slender bodies[J]. Explosion and Shock Waves, 2016, 36(1): 113-120 (in Chinese). | |
24 | 孙龙泉, 孙超, 赵蛟龙. 小尺度回转体出水过程弹射试验系统设计[J]. 传感器与微系统, 2014, 33(6): 76-79. |
SUN L Q, SUN C, ZHAO J L. System design on small-scale solid of revolution exiting water test of scaled missiles[J]. Transducer and Microsystem Technologies, 2014, 33(6): 76-79 (in Chinese). | |
25 | 于娴娴. 水下航行体非稳态空化流动与通气控制方法研究[D]. 北京: 中国科学院大学, 2015. |
YU X X. Unsteady cavitating flow around underwater vehicles and control methods with air-injection[D]. Beijing: University of Chinese Academy of Sciences, 2015 (in Chinese). | |
26 | GAN N, YAO X L, CHENG S H, et al. Experimental investigation on dynamic characteristics of ventilation bubbles on the surface of a vertical moving body[J]. Ocean Engineering, 2022, 246: 110641. |
27 | CHEN X B, XIAO W, GONG R Y, et al. Experimental investigation of ventilation bubble dynamics around a vertically moving cylinder under reduced ambient pressure[J]. Fluid Dynamics Research, 2022, 54(1): 015512. |
28 | QU Z Y, YANG N N, MA G H, et al. Experimental study of unsteady evolution characteristics of ventilated air mass on the cylinder surface[J]. Ocean Engineering, 2022, 264: 112462. |
29 | 胡晓, 郜冶, 彭辉. 湍流模型对空泡形态影响的数值研究[J]. 计算力学学报, 2015, 32(1): 129-135. |
HU X, GAO Y, PENG H. Numerical investigation on influence of turbulence model on cavity shape[J]. Chinese Journal of Computational Mechanics, 2015, 32(1): 129-135 (in Chinese). | |
30 | MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[C]∥23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston: AIAA, 1993: 2906. |
31 | 黄彪, 王国玉. 基于k?ω SST模型的DES方法在空化流动计算中的应用[J]. 中国机械工程, 2010, 21(1): 85-89. |
HUANG B, WANG G Y. Application of a SST-DES turbulence model for computation of cavitating flows[J]. China Mechanical Engineering, 2010, 21(1): 85-89 (in Chinese). | |
32 | 丘德新, 王良军, 张武. 基于改进混合长度尺度的机翼延迟分离涡模拟[J]. 航空兵器, 2022, 29(4): 70-76. |
QIU D X, WANG L J, ZHANG W. The DDES around wing based on improved mixed length scale[J]. Aero Weaponry, 2022, 29(4): 70-76 (in Chinese). | |
33 | 任泽宇, 孙龙泉, 李志鹏, 等. 水下航行体空泡发展及出水溃灭特性实验研究[J]. 宇航总体技术, 2021, 5(1): 42-49. |
REN Z Y, SUN L Q, LI Z P, et al. Experimental study on the cavitation development and collapse characteristics of underwater vehicle[J]. Astronautical Systems Engineering Technology, 2021, 5(1): 42-49 (in Chinese). | |
34 | CHEN Y, CHEN X, LI J, et al. Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil[J]. Ocean Engineering, 2017, 129: 1-19. |
35 | 刘涛涛, 王国玉, 张耐民, 等. 绕多孔孔板通气气体与液体两相横射流旋涡特性分析[J]. 兵工学报, 2017, 38(7): 1375-1384. |
LIU T T, WANG G Y, ZHANG N M, et al. Analysis of vortex dynamics of gas-liquid two-phase crossflows around a porous plate[J]. Acta Armamentarii, 2017, 38(7): 1375-1384 (in Chinese). | |
36 | 庄礼贤, 尹协远, 马晖扬. 流体力学[M]. 2版. 合肥: 中国科学技术大学出版社, 2009. |
ZHUANG L X, YIN X Y, MA H Y. Hydromechanics[M]. 2nd edition. Hefei: University of Science and Technology of China Press, 2009 (in Chinese). | |
37 | JI B, LUO X W, ARNDT R E A, et al. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121-134. |
/
〈 |
|
〉 |