ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Wide-speed aerodynamic layout adopting waverider-delta wing
Received date: 2022-12-29
Revised date: 2023-01-17
Accepted date: 2023-02-08
Online published: 2023-02-10
Supported by
Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)
To overcome the difficulty in inclusive consideration of the subsonic/transonic/supersonic/hypersonic aerodynamic performance of hypersonic vehicles in wide-speed range, we propose a wide-speed-range hypersonic aerodynamic configuration with a waverider forebody and a large swept delta wing. The design of the waverider forebody is based on the conical flow theory. The design Mach number is 5. The wide-speed range airfoil based on the surrogate model optimization design is arranged on a large swept wing with a small aspect ratio. The result shows that in subsonic flight, the configuration can improve aerodynamic performance using vortex lift at high angles of attack, with the lift-drag ratio maintained above 8. In supersonic flight, the double “S” shaped lower surface of the delta wing enables additional loading near the trailing edge of the aerodynamic configuration. In hypersonic flight, the shock wave characteristics at the leading edge of the waverider improve the lift-drag performance. The lift-drag ratio in the supersonic/hypersonic speed range is no smaller than 4.5 with good cruise performance. In addition, the longitudinal static stability in the wide-speed range is analyzed, showing that the aerodynamic center of the aerodynamic configuration is near the tailing edge.
Key words: wide-speed range; hypersonic; waverider; delta wing; vortex lift
Shusheng CHEN , Zhaokang ZHANG , Jinping LI , Cong FENG , Zhenghong GAO . Wide-speed aerodynamic layout adopting waverider-delta wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(23) : 128441 -128441 . DOI: 10.7527/S1000-6893.2023.28441
1 | NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528. |
2 | JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1): 56-72. |
3 | 王晓燕. 基于三维前缘线的乘波体设计方法研究[D]. 长沙: 国防科技大学, 2018. |
WANG X Y. Research on design method of waverider based on three-dimensional leading edge line[D].Changsha: National University of Defense Technology, 2018 (in Chinese). | |
4 | 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10): 3023-3034. |
DUAN Y H, FAN Z L, WU W H. Generation and design method of compact cone waverider with fixed sweep angle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3023-3034 (in Chinese). | |
5 | HE X, RASMUSSEN M L. Computational analysis of off-design waveriders[J]. Journal of Aircraft, 1994, 31(2): 345-353. |
6 | THSTROHMEYER E, NICKEL H, RADESPIEL R. Aerodynamic off-design behavior of integrated waveriders from take-off up to hypersonic flight[C]∥International Aerospace Planes and Hypersonics Technologies. Reston: AIAA, 1995: 6091. |
7 | SHI Y J, TSAI B J, MILES J, et al. Cone-derived waverider flowfield simulation including turbulence and off-design conditions[C]∥12th Applied Aerodynamics Conference. Reston: AIAA, 1994: 1822. |
8 | STARKEY R P, LEWIS M J. Analytical off-design lift-to-drag-ratio analysis for hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 684-691. |
9 | LI S B, LUO S B, HUANG W, et al. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1): 50-65. |
10 | LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10. |
11 | LI S B, WANG Z G, HUANG W, et al. Design and investigation on variable Mach number waverider for a wide-speed range[J]. Aerospace Science and Technology, 2018, 76: 291-302. |
12 | 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑: 技术科学), 2009, 39(11): 1828-1835. |
WANG F M, DING H H, LEI M F. Aerodynamic characteristics and research of waverider aircraft in wide speed range[J]. Scientia Sinica (Technologica), 2009, 39(11): 1828-1835 (in Chinese). | |
13 | RODI P. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: AIAA2011-1188. |
14 | RODI P. Vortex lift waverider configurations[C]∥Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012: AIAA2012-1238. |
15 | 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7): 121824. |
LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design of vortex wave effect in wide speed range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121824 (in Chinese). | |
16 | 刘传振, 白鹏, 陈冰雁, 等. 定平面形状乘波体及设计变量影响分析[J]. 宇航学报, 2017, 38(5): 451-458. |
LIU C Z, BAI P, CHEN B Y, et al. Analysis of the influence of fixed plane shape waverider and design variables[J]. Journal of Astronautics, 2017, 38(5): 451-458 (in Chinese). | |
17 | ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151: 848-863. |
18 | 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术, 2022(4): 28-39, 86. |
XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide-speed aircraft[J]. Aerospace Technology, 2022(4): 28-39, 86 (in Chinese). | |
19 | 张阳, 韩忠华, 周正, 等. 面向高超声速飞行器的宽速域翼型优化设计[J]. 空气动力学学报, 2021, 39(6): 111-127. |
ZHANG Y, HAN Z H, ZHOU Z, et al. Optimal design of airfoil for hypersonic vehicle in wide speed range[J]. Acta Aerodynamica Sinica, 2021, 39(6): 111-127 (in Chinese). | |
20 | 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 121737. |
SUN X C, HAN Z H, LIU F, et al. Design and analysis of airfoil/wing of hypersonic vehicle in wide speed range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737 (in Chinese). | |
21 | FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452. |
22 | 方孝健. 翼身融合造型方法研究与实现[D]. 武汉: 华中科技大学, 2015. |
FANG X J. Research and implementation of wing-body fusion modeling method[D].Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese). | |
23 | 刘衍旭, 陈树生, 冯聪, 等. 高超声速滑翔飞行器锐边化气动隐身一体化设计[J]. 航空学报, 2023, 44(16): 128093. |
LIU Yanxu, CHEN Shusheng, FENG Cong, et al. Sharp edge integrated aerodynamic-stealth design for hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 128093 (in Chinese). | |
24 | CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics, 2021, 34(5): 628-641. |
25 | CHEN S S, LI J P, LI Z, et al. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes[J]. Journal of Computational Physics, 2022, 456: 111027. |
/
〈 |
|
〉 |