ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Progress in manufacturing technologies of resin⁃based composite lattice structures
Received date: 2022-11-11
Revised date: 2022-11-23
Accepted date: 2023-01-17
Online published: 2023-02-10
Supported by
National Natural Science Foundation of China(51790172)
Being an advanced structure which integrates the advantages of lattice structures and composite materials, the resin-based composite lattice structure is an ideal structural material to realize the lightweight, multifunctional, and intelligent aircraft structure. However, due to the characteristics of the composite lattice structure, such as the anisotropy of composite materials, the cross-scale feature, the complex geo-metric topology configuration, and the multi-functional integrated design requirements, there are many problems and challenges in the manufacturing technology of composite lattice structure. This article reviews the development of composite lattice structure manufacturing technology and characteristics. In addition to the analysis of current status, the characteristics of the manufacturing technology are classified and discussed, and the key techniques of manufacturing technologies are analyzed. The existing problems restricting the development of the manufacturing technology for the composite lattice are further analyzed. Finally, the future development directions of the composite lattice structure preparation field are suggested.
Jian HAN , Shiyong SUN , Bin NIU , Rui YANG , Dongjiang WU . Progress in manufacturing technologies of resin⁃based composite lattice structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(9) : 628255 -628255 . DOI: 10.7527/S1000-6893.2023.28255
1 | 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1): 41-67. |
WU L Z, XIONG J, MA L, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics, 2012, 42(1): 41-67 (in Chinese). | |
2 | 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1): 99-112. |
FAN H L, YANG W. Development of lattice materials with high specific stiffness and strength[J]. Advances in Mechanics, 2007, 37(1): 99-112 (in Chinese). | |
3 | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. |
DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). | |
4 | 赵天, 李营, 张超, 等.高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 526851. |
ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: state-of-art review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526851 (in Chinese). | |
5 | 张卫红, 周涵, 李韶英, 等. 航天高性能薄壁构件的材料-结构一体化设计[J].航空学报,(2022-10-9),[2023-01-22]. doi:10.7527/S1000-6893.2022.27428 |
ZHANG W H, ZHOU H, LI S Y, et al. Material-structure integrated design for high-performance aerospace thin-walled component[J]. Acta Aeronautica et Astronautica Sinica, 2022-10-9), [2023-01-22]. doi:10.7527/S1000-6893.2022.27428 (in Chinese. | |
6 | 杨亚政, 杨嘉陵, 曾涛, 等. 轻质多孔材料研究进展[J]. 力学季刊, 2007, 28(4): 503-516. |
YANG Y Z, YANG J L, ZENG T, et al. Progress in research work of light materials[J]. Chinese Quarterly of Mechanics, 2007, 28(4): 503-516 (in Chinese). | |
7 | EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3-4): 309-327. |
8 | 杨卫, 范华林, 王斌, 等. 复合材料点阵结构[M]∥ 洪友士. 应用力学进展. 北京: 科学出版社, 2004:56-62. |
YANG W, FAN H L, WANG B, et al. Composite lattice structure[M]∥HONG Y S. Applied advances in mechanics. Beijing: Science Press, 2004:56-62 (in Chinese). | |
9 | FINNEGAN K, KOOISTRA G, WADLEY H N G, et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International Journal of Materials Research, 2007, 98(12): 1264-1272. |
10 | GEORGE T, DESHPANDE V S, WADLEY H N G. Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Composites Part A: Applied Science and Manufacturing, 2013, 47: 31-40. |
11 | ZHANG G Q, MA L, WANG B, et al. Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores[J]. Composites Part B: Engineering, 2012, 43(2): 471-476. |
12 | LEE B C, LEE K W, BYUN J H, et al. The compressive response of new composite truss cores[J]. Composites Part B: Engineering, 2012, 43(2): 317-324. |
13 | CHE L, XU G D, ZENG T, et al. Compressive and shear characteristics of an octahedral stitched sandwich composite[J]. Composite Structures, 2014, 112: 179-187. |
14 | DONG L, WADLEY H. Mechanical properties of carbon fiber composite octet-truss lattice structures[J]. Composites Science and Technology, 2015, 119: 26-33. |
15 | ZHANG P, HAN Z Y, RAN X D, et al. Path design and compression behavior of 3D printed continuous carbon fiber reinforced composite lattice sandwich structures[J]. Composite Structures, 2022, 296: 115893. |
16 | KHALEDI H, ROSTAMIYAN Y. Flexural strength of foam-filled polymer composite sandwich panel with novel M-shaped core reinforced by nano-SiO2[J]. Polymer Composites, 2021, 42(12): 6704-6718. |
17 | CHEUNG K C, GERSHENFELD N. Reversibly assembled cellular composite materials[J]. Science, 2013, 341(6151): 1219-1221. |
18 | WANG X T, WANG B, WEN Z H, et al. Fabrication and mechanical properties of CFRP composite three-dimensional double-arrow-head auxetic structures[J]. Composites Science and Technology, 2018, 164: 92-102. |
19 | LI W X, ZHENG Q, FAN H L, et al. Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders[J]. Engineering, 2020, 6(2): 196-204. |
20 | 郝建伟, 陈亚莉. 树脂基复合材料成形工艺进展 [J]. 航空制造技术, 2008, 51(S1): 120-125. |
HAO J W, CHEN Y L. Development of resin matrix composite forming process[J]. Aeronautical Manufacturing Technology, 2008, 51(S1): 120-125 (in Chinese). | |
21 | YIN S, WU L Z, MA L, et al. Pyramidal lattice sandwich structures with hollow composite trusses[J]. Composite Structures, 2011, 93(12): 3104-3111. |
22 | YIN S, WU L Z, YANG J S, et al. Damping and low-velocity impact behavior of filled composite pyramidal lattice structures[J]. Journal of Composite Materials, 2014, 48(15): 1789-1800. |
23 | WANG B, ZHANG G Q, HE Q L, et al. Mechanical behavior of carbon fiber reinforced polymer composite sandwich panels with 2-D lattice truss cores[J]. Materials & Design, 2014, 55: 591-596. |
24 | WANG B, WU L Z, MA L, et al. Fabrication and testing of carbon fiber reinforced truss core sandwich panels[J]. Journal of Materials Science & Technology, 2009, 25(4): 547-550. |
25 | LI M, WU L Z, MA L, et al. Structural design of pyramidal truss core sandwich beams loaded in 3-point bending[J]. Journal of Mechanics of Materials and Structures, 2011, 6(9-10): 1255-1266. |
26 | XIONG J, MA L, PAN S, et al. Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Acta Materialia, 2012, 60(4): 1455-1466. |
27 | HUANG W, FAN Z H, ZHANG W, et al. Impulsive response of composite sandwich structure with tetrahedral truss core[J]. Composites Science and Technology, 2019, 176: 17-28. |
28 | XIONG J, MA L, WU L Z, et al. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures[J]. Composite Structures, 2010, 92(11): 2695-2702. |
29 | XIONG J, MA L, WU L Z, et al. Mechanical behavior and failure of composite pyramidal truss core sandwich columns[J]. Composites Part B: Engineering, 2011, 42(4):938-945. |
30 | SUN Y G, GAO L. Mechanical behavior of all-composite pyramidal truss cores sandwich panels[J]. Mechanics of Materials, 2013, 65: 56-65. |
31 | GAO L, SUN Y G, CONG L X, et al. Mechanical behaviours of composite sandwich panel with strengthened pyramidal truss cores[J]. Composite Structures, 2013, 105: 149-152. |
32 | XU G D, YANG F, ZENG T, et al. Bending behavior of graded corrugated truss core composite sandwich beams[J]. Composite Structures, 2016, 138: 342-351. |
33 | SUN Y, GUO L C, WANG T S, et al. Bending strength and failure of single-layer and double-layer sandwich structure with graded truss core[J]. Composite Structures, 2019, 226: 111204. |
34 | GAO Y, ZHOU Z G, HU H, et al. New concept of carbon fiber reinforced composite 3D auxetic lattice structures based on stretching-dominated cells[J]. Mechanics of Materials, 2021, 152: 103661. |
35 | LI X D, WU L Z, MA L, et al. Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2): 76-80. |
36 | WU Q Q, MA L, WU L Z, et al. A novel strengthening method for carbon fiber composite lattice truss structures[J]. Composite Structures, 2016, 153: 585-592. |
37 | DONG L, WADLEY H. Shear response of carbon fiber composite octet-truss lattice structures[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 182-192. |
38 | WANG B, HU J Q, LI Y Q, et al. Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core[J]. Composite Structures, 2018, 185: 619-633. |
39 | YIN S, CHEN H Y, WU Y B, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood[J]. Composite Structures, 2018, 201: 131-140. |
40 | LI W X, SUN F F, WANG P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 313-322. |
41 | VITALE P, FRANCUCCI G, RAPP H, et al. Manufacturing and compressive response of ultra-lightweight CFRP cores[J]. Composite Structures, 2018, 194: 188-198. |
42 | MCHALE C, WEAVER P M. Morphing composite cylindrical lattices with enhanced bending stiffness[J]. Materials & Design, 2022, 222: 111056. |
43 | ZHANG S K, YU K H, DONG L. Compressive property of a hybrid hierarchical metamaterial[J]. Materials Today Communications, 2022, 33: 104260. |
44 | FAN H L, QU Z X, XIA Z C, et al. Designing and compression behaviors of ductile hierarchical pyramidal lattice composites[J]. Materials & Design, 2014, 58: 363-367. |
45 | FAN H L, SUN F F, YANG L, et al. Interlocked hierarchical lattice materials reinforced by woven textile sandwich composites[J]. Composites Science and Technology, 2013, 87: 142-148. |
46 | YIN S, WU L Z, NUTT S. Stretch-bend-hybrid hierarchical composite pyramidal lattice cores[J]. Composite Structures, 2013, 98: 153-159. |
47 | XU J, GAO X, ZHANG C, et al. Flax fiber-reinforced composite lattice cores: a low-cost and recyclable approach[J]. Materials & Design, 2017, 133: 444-454. |
48 | JENETT B, CALISCH S, CELLUCCI D, et al. Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics, 2017, 4(1): 33-48. |
49 | 范华林, 杨卫, 方岱宁, 等. 新型碳纤维点阵复合材料技术研究[J]. 航空材料学报, 2007, 27(1): 46-50. |
FAN H L, YANG W, FANG D N, et al. Interlacing technique for new carbon fiber lattice materials[J]. Journal of Aeronautical Materials, 2007, 27(1): 46-50 (in Chinese). | |
50 | XU G D, ZHAI J J, ZENG T, et al. Response of composite sandwich beams with graded lattice core[J]. Composite Structures, 2015, 119: 666-676. |
51 | KIM H, CHO B H, HUR H K, et al. A composite sandwich panel integrally woven with truss core[J]. Materials & Design, 2015, 65: 231-242. |
52 | LEE Y H, LEE B K, JEON I, et al. Wire-woven bulk Kagome truss cores[J]. Acta Materialia, 2007, 55(18): 6084-6094. |
53 | ZHAI G T, ZHANG J R. Scalable fiber composite lattice structures via continuous spatial weaving[J]. Composite Structures, 2021, 262: 113651. |
54 | DJAMA K, MICHEL L, GABOR A, et al. Mechanical behaviour of a sandwich panel composed of hybrid skins and novel glass fibre reinforced polymer truss core[J]. Composite Structures, 2019, 215: 35-48. |
55 | JIA J L, YAN S. Fabrication and low-velocity impact response of pyramidal lattice stitched foam sandwich composites[J]. Science and Engineering of Composite Materials, 2020, 27(1):245-257. |
56 | WANG B, LUO B L, JIANG R Y, et al. Double-layer woven lattice truss sandwich composite for multifunctional application: design, manufacture and characterization[J]. Composites Part B: Engineering, 2022, 241: 110026. |
57 | 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5): 637-649. |
WEN L W, XIAO J, WANG X F, et al. Progress of automated placement technology for composites in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5): 637-649 (in Chinese). | |
58 | 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16): 64-77. |
WANG X F, DUAN S H, TANG S S, et al. Progress of composite automated placement technology in aviation field[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 64-77 (in Chinese). | |
59 | 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, 33(6): 1214-1222. |
SONG Q H, XIAO J, WEN L W, et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1214-1222 (in Chinese). | |
60 | COMER A J, RAY D, OBANDE W O, et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 10-20. |
61 | 丁希仑, 罗伟恒, 刘斐, 等. 自动铺丝成型构件缺陷在线检测技术进展[J]. 北京航空航天大学学报, 2022, 48(9): 1721-1733. |
DING X L, LUO W H, LIU F, et al. Review on automated fiber placement induced defects and their online monitoring technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1721-1733 (in Chinese). | |
62 | 张一鸣. GF/HDPE金字塔点阵结构铺放成型工艺研究[D]. 大连: 大连理工大学, 2020: 49-55. |
ZHANG Y M. Laying forming process of GF/HDPE pyramidal lattice structures[D]. Dalian: Dalian University of Technology, 2020: 49-55 (in Chinese). | |
63 | 张一鸣, 杨睿, 梁宜楠, 等. GF/HDPE复合材料层合板铺放工艺参数分析[J]. 塑料, 2020, 49(6): 94-97, 107. |
ZHANG Y M, YANG R, LIANG Y N, et al. Analysis of laying parameters of GF/HDPE composite laminates[J]. Plastics, 2020, 49(6): 94-97, 107 (in Chinese). | |
64 | 梁宜楠, 杨睿, 王俊龙, 等. 热塑性复合材料点阵铺放工艺对层间剪切强度的影响研究[J]. 复合材料科学与工程, 2021(10): 61-66. |
LIANG Y N, YANG R, WANG J L, et al. Effects of automated placement process of lattice structure with thermoplastic composites on the inter-laminar shear strength[J]. Composites Science and Engineering, 2021(10): 61-66 (in Chinese). | |
65 | 梁宜楠. CF/PEEK点阵结构自动铺放原位成型工艺研究[D]. 大连: 大连理工大学, 2021:49-58. |
LIANG Y N. Automated fiber placement and In-situ consolidation process of CF/PEEK lattice structure[D]. Dalian: Dalian University of Technology, 2021: :49-58 (in Chinese). | |
66 | ZENG C J, LIU L W, BIAN W F, et al. Temperature-dependent mechanical response of 4D printed composite lattice structures reinforced by continuous fiber[J]. Composite Structures, 2022, 280: 114952. |
67 | JIMBO K, TATENO T. Design optimization of infill pattern structure and continuous fiber path for CFRP-AM: simultaneous optimization of topology and fiber arrangement for minimum material cost[J]. Precision Engineering, 2022, 74: 447-459. |
68 | LUAN C C, YAO X H, ZHANG C, et al. Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology[J]. Composites Science and Technology, 2020, 188: 107986. |
69 | LUAN C C, YAO X H, ZHANG C, et al. Large-scale deformation and damage detection of 3D printed continuous carbon fiber reinforced polymer-matrix composite structures[J]. Composite Structures, 2019, 212: 552-560. |
70 | LIU S T, LI Y G, LI N Y. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design, 2018, 137: 235-244. |
71 | EICHENHOFER M, WONG J C H, ERMANNI P. Continuous lattice fabrication of ultra-lightweight composite structures[J]. Additive Manufacturing, 2017, 18: 48-57. |
72 | KEIDEL D, FASEL U, ERMANNI P. Concept investigation of a lightweight composite lattice morphing wing[J]. AIAA Journal, 2021, 59(6): 2242-2250. |
73 | WANG Z W, LUAN C C, LIAO G X, et al. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure[J]. Composites Part B: Engineering, 2019, 176: 107215. |
74 | NIU B, LI S J, YANG R. Manufacturing and mechanical properties of composite orthotropic Kagome honeycomb using novel modular method[J]. Frontiers of Mechanical Engineering, 2020, 15(3): 484-495. |
75 | MEI J, LIU J Y, LIU J L. A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 28-39. |
76 | TAO Q, WANG C G, WANG K, et al. Mixed-mode bending of a smart reconfigurable lattice structure with bi-directional corrugated core[J]. International Journal of Mechanical Sciences, 2020, 185: 105848. |
77 | UMER R, BARSOUM Z, JISHI H Z, et al. Analysis of the compression behaviour of different composite lattice designs[J]. Journal of Composite Materials, 2018, 52(6): 715-729. |
78 | GEORGE T, DESHPANDE V S, WADLEY H N G. Hybrid carbon fiber composite lattice truss structures[J]. Composites Part A: Applied Science and Manufacturing, 2014, 65: 135-147. |
79 | GEORGE T, DESHPANDE V S, SHARP K, et al. Hybrid core carbon fiber composite sandwich panels: fabrication and mechanical response[J]. Composite Structures, 2014, 108: 696-710. |
80 | 贾振元, 肖军, 湛利华, 等. 大型航空复合材料承力构件制造关键技术[J]. 中国基础科学, 2019, 21(2): 20-27. |
JIA Z Y, XIAO J, ZHAN L H, et al. Research of large aviation and loading-bearing composite components manufacturing[J]. China Basic Science, 2019, 21(2): 20-27 (in Chinese). | |
81 | XIONG J, MA L, VAZIRI A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting[J]. Acta Materialia, 2012, 60(13-14): 5322-5334. |
82 | LIU X, ALIZADEH V, HANSEN C J. The compressive response of octet lattice structures with carbon fiber composite hollow struts[J]. Composite Structures, 2020, 239: 111999. |
83 | HU J Q, LIU A K, ZHU S W, et al. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores[J]. Composite Structures, 2020, 251: 112659. |
84 | SCHNEIDER C, VELEA M N, KAZEMAHVAZI S, et al. Compression properties of novel thermoplastic carbon fibre and poly-ethylene terephthalate fibre composite lattice structures[J]. Materials & Design (1980-2015), 2015, 65: 1110-1120. |
85 | JISHI H Z, UMER R, CANTWELL W J. The fabrication and mechanical properties of novel composite lattice structures[J]. Materials & Design, 2016, 91: 286-293. |
86 | XU B, YIN S, WANG Y, et al. Long-fiber reinforced thermoplastic composite lattice structures: fabrication and compressive properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 41-50. |
87 | ZHAO Y Q, LIU M Y, ZHANG T, et al. Compressive properties of reversibly assembled lattice structures[J]. Journal of Reinforced Plastics and Composites, 2021, 40(11-12): 422-436. |
88 | 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. |
GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797 (in Chinese). | |
89 | 任明法, 王荣国, 陈浩然. 具有金属内衬复合材料纤维缠绕容器固化过程的数值模拟[J]. 复合材料学报, 2005, 22(4): 118-124. |
REN M F, WANG R G, CHEN H R. Numerical simulation of curing process for filament wound pressure vessel with metal liner[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 118-124 (in Chinese). | |
90 | 郭东明. 高性能制造[J]. 机械工程学报, 2022, 58(21): 225-242. |
GUO D M. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21): 225-242 (in Chinese). |
/
〈 |
|
〉 |