ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic mechanism of strong ground effect on horizontal boost run cross velocity domain
Received date: 2022-11-09
Revised date: 2022-12-15
Accepted date: 2023-01-10
Online published: 2023-02-06
Supported by
Youth Fund of the National Natural Science Foundation of China(12104047)
The rocket sled can realize supersonic speed in a short time with horizontal boost sliding, which is not only the major means of current high-speed ground dynamic tests, but also an important supporting carrier for the future reusable Single Stage to Orbit (SSTO) for the horizontal launch. Aiming at the key problems such as raising/lowering the head of the payload during separation from the sled and the sensor layout scheme design for rocket sled testing, we adopt the hypersonic standard model as the payload to study the aerodynamic mechanism of the rocket sled horizontal boost sliding system based on the high-precision turbulent numerical theory and the complex shock wave system interference theory. Analysis of the vortex system evolution, local flow field characteristics, and overall aerodynamic characteristics of the structure at the sliding speed across the speed domain reveals the influence mechanism of different connection schemes on the payload and the variation law of the structure surface pressure distribution. The results show that at a low Mach number, the pressure fluctuation in the low pressure region changes periodically, easy to cause aerodynamic vibration; at different Mach numbers, the location of the low pressure zone changes obviously, the region expands with high velocity, and the wake vortex is relatively stable; changing the connection distance and connection height can significantly change the vortex position in the low-pressure region.
Wenjie WANG , Xu ZHAO , Long YANG , Haojun LI , Yue XIANG . Aerodynamic mechanism of strong ground effect on horizontal boost run cross velocity domain[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 528247 -528247 . DOI: 10.7527/S1000-6893.2022.28247
1 | 王明清. 基于固体火箭发动机的火箭橇动力系统研究[D]. 南京: 南京理工大学, 2017. |
WANG M Q. Research on dynamical system of rocket sled with solid rocket motors[D]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese). | |
2 | 范坤, 王西泉, 杨珍. 火箭橇结构动力学仿真分析技术研究[J]. 导航与控制, 2015, 14(6): 21-26, 20. |
FAN K, WANG X Q, YANG Z. Research on structure dynamic simulation analysis technology of rocket sled[J]. Navigation and Control, 2015, 14(6): 21-26, 20 (in Chinese). | |
3 | 杨兴邦. XB高精度火箭橇试验滑轨[J]. 中国工程科学, 2000, 2(10): 98-104. |
YANG X B. XB high accuracy rocket sled test track[J]. Engineering Science, 2000, 2(10): 98-104 (in Chinese). | |
4 | INGOLD N L. Reverse velocity rocket sled test bed for inertial guidance systems[J]. Navigation, 1983, 30(1): 90-99. |
5 | 陈亚奇, 王艳艳, 白蕾, 等. 火箭橇试验动态点火信号监测方法[J]. 兵器装备工程学报, 2016, 37(5): 74-76. |
CHEN Y Q, WANG Y Y, BAI L, et al. Method of dynamic ignition signal detection for rocket sled test[J]. Journal of Ordnance Equipment Engineering, 2016, 37(5): 74-76 (in Chinese). | |
6 | BERRIDGE D C, KOSTAK H, MCKIERNAN G, et al. Hypersonic ground tests with high-frequency instrumentation in support of the boundary layer transition (BOLT) flight experiment[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
7 | BERRY S A, MASON M L, GREENE F, et al. LaRC aerothermodynamic ground tests in support of BOLT flight experiment[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
8 | AGUILAR D, GALLON J C, HENNINGS E J, et al. Rocket sled strength testing of large, supersonic parachutes[C]∥ Proceedings of the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015. |
9 | RIGALI D J, FELTZ L V. High-speed monorail rocket sleds for aerodynamic testing at high Reynolds numbers[J]. Journal of Spacecraft and Rockets, 1968, 5(11): 1341-1346. |
10 | 詹泽深, 温天佑. 抗1000 km/h高速气流吹袭的保护头盔及氧气面罩的研制[J]. 航空学报, 1995, 16(1): 18-22. |
ZHAN Z S, WEN T Y. The development of the protective helmet and oxygen mask against the wind blast at a velocity of 1 000 km/H[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(1): 18-22. (in Chinese) | |
11 | 王云. 火箭橇试验滑轨的发展与展望[J]. 航空科学技术, 2010, 21(1): 30-32. |
WANG Y. Status and prospect for rocket sled track development in China[J]. Aeronautical Science and Technology, 2010, 21(1): 30-32 (in Chinese). | |
12 | MIXON L C, EVANS C B, GILLIAM W L. Rail roughness study of the Holloman high speed rocket sled test track8: AD Al05778[R]. New Mexico: Holloman AFB, 1981. |
13 | 周晓军. 基于Simpack的火箭橇动力学分析[D]. 南京: 南京理工大学, 2018. |
ZHOU X J. The dynamics analysis based on simpack of rocket sled[D]. Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese). | |
14 | 杨兴邦. XB火箭橇试验滑轨的直线度评估[J]. 航空精密制造技术, 1999, 35(5): 25-29. |
YANG X B. Straightness evaluation of XB rocket sled test slide rail[J]. Aviation Precision Manufacturing Technology, 1999, 35(5): 25-29 (in Chinese). | |
15 | 宪瑞. 中国成功运行世界首个电磁橇:磁悬浮速度突破 1 000公里/小时 [EB/OL].(2022-10-19)[2022-10-22]. . |
XIAN R. China successfully ran the world’s first electromagnetic sled: the magnetic suspension speed exceeded 1 000 km/h [EB/OL]. (2022-10-19) [2022-10-22]. (in Chinese). | |
16 | 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1): 58-85. |
WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85 (in Chinese). | |
17 | 周柏航, 王浩, 阮文俊, 等. 地面效应对火箭橇发动机尾喷管流场特性的影响研究[J]. 推进技术, 2021, 42(6): 1380-1386. |
ZHOU B H, WANG H, RUAN W J, et al. Influence of ground effect on flow field characteristics of rocket skid motor tail nozzle[J]. Journal of Propulsion Technology, 2021, 42(6): 1380-1386 (in Chinese). | |
18 | 王健. 高速火箭橇—轨道系统耦合动力学研究[D]. 南京: 南京理工大学, 2011. |
WANG J. The research for coupled dynamics of high speed rocket sled-track systems[D]. Nanjing: Nanjing University of Science and Technology, 2011 (in Chinese). | |
19 | LOFTHOUSE A, HUGHSON M, PALAZOTTO A. Computational aerodynamic analysis of the flow field about a hypervelocity test sled[C]∥ Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
20 | 张传侠, 吕水燕, 谢波涛, 等. 强地效环境下有翼火箭橇侧翼气动特性研究[J]. 兵器装备工程学报, 2018, 39(9): 89-92. |
ZHANG C X, LYU S Y, XIE B T, et al. Study on aerodynamic characteristics of the wing of winged rocket sled under strong ground effect environment[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 89-92 (in Chinese). | |
21 | 肖虹, 高超, 孙良. 钝头体火箭撬试验地面效应影响的数值模拟[J]. 弹箭与制导学报, 2011, 31(4): 102-104. |
XIAO H, GAO C, SUN L. The numerical simulation of ground effect in blunt rocket sled experiment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 102-104 (in Chinese). | |
22 | 房明, 孙建红, 王从磊, 等. 低亚声速火箭橇尾流场特性分析[J]. 空气动力学学报, 2017, 35(6): 897-901. |
FANG M, SUN J H, WANG C L, et al. Analysis of wake flow characteristics for low subsonic rocket sled[J]. Acta Aerodynamica Sinica, 2017, 35(6): 897-901 (in Chinese). | |
23 | YAN P Z, ZHANG L S, WANG W J, et al. Numerical simulation of aerodynamic and aeroacoustic characteristics of subsonic rocket sled[J]. Applied Acoustics, 2021, 182: 108208. |
24 | 张婷婷, 叶瑞, 姜维, 等. 高超声速风洞HSCM系列标准模型气动力实验数据[J]. 气体物理, 2021, 6(4): 57-65. |
ZHANG T T, YE R, JIANG W, et al. Aerodynamic test data of HSCM calibration models in hypersonic wind tunnel[J]. Physics of Gases, 2021, 6(4): 57-65 (in Chinese). | |
25 | 党天骄, 刘振, 周学文, 等. 高超声速火箭橇导流板气动参数数值研究[J]. 固体火箭技术, 2020, 43(3): 355-363. |
DANG T J, LIU Z, ZHOU X W, et al. Numerical investigation on aerodynamic parameters of deflector of hypersonic rocket sled[J]. Journal of Solid Rocket Technology, 2020, 43(3): 355-363 (in Chinese). | |
26 | VUKOVI? D, DAMLJANOVI? D. HB-2 high-velocity correlation model at high angles of attack in supersonic wind tunnel tests[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1565-1576. |
27 | 吕润民. 超音速火箭橇气动激励振动特性研究[D]. 南京: 南京航空航天大学, 2020. |
LYU R M. Study on aerodynamic vibration characteristics of supersonic rocket sled[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). |
/
〈 |
|
〉 |