ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Comparation of reception performance of EMATs in laser ultrasonic surface detection of aluminum alloys
Received date: 2022-10-08
Revised date: 2022-11-03
Accepted date: 2023-01-28
Online published: 2023-02-06
Supported by
National Natural Science Foundation of China(12064001);Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(20204BCJL22039);Jiangxi Province Funds for Distinguished Young Youths(20212ACB214010);Key Research and Development Plan of Jiangxi Province(20212BBE51006);Graduate Innovation Fund Project of Nanchang Hangkong University(YC2021-S694)
Meander-line coil Electromagnetic Acoustic Transducer (EMAT), linear coil in-plane EMAT, and linear coil out-of-plane EMAT are often used to receive ultrasonic waves in the laser-EMAT Rayleigh Wave (RW) detection of aluminum alloy plate. However, the reception performance and applications of these three types of EMATs remain unclear. Therefore, a finite element model of the laser-EMAT RW detection process for aluminum alloys was first established, and the effects of three types of EMAT configurations on the energy of RW, shear wave, and longitudinal wave modes of ultrasonic were analyzed. Secondly, the effects of the surface constraint mechanism on the RW amplitude and its purity were studied, and the surface defect detection capability of the three types of EMATs was explored. Finally, three types of EMAT probes were made, and RW detection experiments were carried out with laser-EMAT on aluminum alloy plates. The influence of the surface constraint mechanism on the amplitude of each mode of ultrasonic waves received by the three types of EMATs and the ability of surface defect detection was analyzed. The results show that compared to the linear coil in-plane EMAT, the meander-line coil EMAT and linear coil out-of-plane EMAT receive a higher purity RW and are more suitable for surface defect detection. The multi-mode ultrasonic wave received by the linear coil in-plane EMAT is obvious, which is shown to be more suitable for simultaneous detection of surface/internal defects. Compared to the non-surface constraint mechanism, the RW amplitude of three kinds of EMATs can be enhanced more than two times by using the surface constraint mechanism, with the enhancement of the RW amplitude of the meander-line coil EMAT being the most significant. Compared to the laser-linear coil in-plane EMAT without a surface constraint mechanism, the laser-linear coil out-of-plane EMAT with a surface constraint mechanism can increase the received DW amplitude by more than 6 times.
Pan HE , Chao LU , Wenze SHI , Ying ZHU , Guo CHEN , Liping ZHAO . Comparation of reception performance of EMATs in laser ultrasonic surface detection of aluminum alloys[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(16) : 428085 -428085 . DOI: 10.7527/S1000-6893.2022.28085
1 | 张俊苗, 聂宏, 薛彩军, 等. 铝合金焊接接头预腐蚀强度特性及预测[J]. 航空学报, 2013, 34( 9): 2161- 2168. |
ZHANG J M, NIE H, XUE C J, et al. Properties and prediction of pre-corrosion strength of aluminum alloy welded joints[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34( 9): 2161- 2168 (in Chinese). | |
2 | 陈亚军, 刘辰辰, 王付胜. 预腐蚀和交替腐蚀作用下航空铝合金多轴疲劳行为及寿命预测[J]. 航空学报, 2019, 40( 4): 222465. |
CHEN Y J, LIU C C, WANG F S. Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40( 4): 222465 (in Chinese). | |
3 | 高祥熙, 徐娜, 许路路, 等. 飞机液压导管裂纹的超声表面波检测[J]. 无损检测, 2021, 43( 5): 1- 4, 33. |
GAO X X, XU N, XU L L, et al. Surface acoustic wave testing of crack in aircraft hydraulic pipe[J]. Nondestructive Testing Technologying, 2021, 43( 5): 1- 4, 33 (in Chinese). | |
4 | YUAN W, LIU Z, LI Y, et al. Study on the laser-EMAT integrated system for simultaneously measuring the width and depth of metal plate[J]. IEEE Sensors Journal, 2021, 21( 5): 6270- 6279. |
5 | HANG K S, ZHOU Z G, ZHOU J H, et al. Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation[J]. Applied Surface Science, 2015, 353: 284- 290. |
6 | 杨连杰, 李阳, 孙俊杰, 等. 激光超声表面波在表面缺陷上的反射与透射[J]. 激光与光电子学进展, 2019, 56( 4): 041203. |
YANG L J, LI Y, SUN J J, et al. Reflection and transmission of laser ultrasonic waves on surface defects[J]. Laser & Optoelectronics Progress, 2019, 56( 4): 041203 (in Chinese). | |
7 | 宋燕星, 王晶. 激光参数及激光超声探测方法对超声信号影响[J]. 红外与激光工程, 2014, 43( 5): 1433- 1437. |
SONG Y X, WANG J. Influence of laser parameters and laser ultrasonic detection method on ultrasonic signals[J]. Infrared and Laser Engineering, 2014, 43( 5): 1433- 1437 (in Chinese). | |
8 | 姬冠妮, 王亚亚, 史二娜. 激光超声检测技术的材料表面微小损伤检测[J]. 激光杂志, 2019, 40( 9): 65- 68. |
JI G N, WANG Y Y, SHI E N. Material surface micro damage detection based on laser ultrasonic detection technology[J]. Laser Journal, 2019, 40( 9): 65- 68 (in Chinese). | |
9 | ZHOU Z G, ZHANG K S, ZHOU J H, et al. Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks[J]. Optics & Laser Technology, 2015, 73: 173- 178. |
10 | MONTINARO N, EPASTO G, CERNIGLIA D, et al. Laser ultrasonics inspection for defect evaluation on train wheel[J]. NDT & E International, 2019, 107: 102145. |
11 | 石文泽, 程进杰, 胡硕臻, 等. 脉冲压缩在铝薄板电磁超声导波检测中的应用[J]. 航空学报, 2022, 43( 3): 425063. |
SHI W Z, CHENG J J, HU S Z, et al. Application of pulse compression in electromagnetic ultrasonic guided wave detection of aluminum sheet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43( 3): 425063 (in Chinese). | |
12 | 胡松涛, 石文泽, 卢超, 等. 高速铁路道岔尖轨轨底伤损SH导波原位检测方法研究[J]. 机械工程学报, 2021, 57( 18): 2- 14. |
HU S T, SHI W Z, LU C, et al. Research on In-situ detection of damage in the high-speed railway turnout bottom based on shear horizontal guided wave[J]. Journal of Mechanical Engineering, 2021, 57( 18): 2- 14 (in Chinese). | |
13 | TKOCZ J, GREENSHIELDS D, DIXON S. High power phased EMAT arrays for nondestructive testing of as-cast steel[J]. NDT & E International, 2019, 102: 47- 55. |
14 | THRING C B, FAN Y, EDWARDS R S. Focused Rayleigh wave EMAT for characterisation of surface-breaking defects[J]. NDT & E International, 2016, 81: 20- 27. |
15 | ZHANG X, FENG S, TU J, et al. An improved design of shear horizontal guided wave electromagnetic acoustic transducer[J]. Insight—Non-Destructive Testing and Condition Monitoring, 2020, 62( 8): 494- 497. |
16 | 孙斐然, 孙振国, 张文增, 等. 基于洛伦兹力机制的电磁超声发射换能器的建模与优化[J]. 机械工程学报, 2016, 52( 6): 12- 21. |
SUN F R, SUN Z G, ZHANG W Z, et al. Review of modeling method and optimum design of EMAT transmitters based on Lorentz principle[J]. Journal of Mechanical Engineering, 2016, 52( 6): 12- 21 (in Chinese). | |
17 | 谷艳红, 张振振, 高先和, 等. 激光超声结合电磁超声在铝板无损检测中的应用研究[J]. 中国激光, 2020, 47( 5): 422- 428. |
GU Y H, ZHANG Z Z, GAO X H, et al. Application of nondestructive detection of aluminum using laser ultrasonic technology and EMAT method[J]. Chinese Journal of Lasers, 2020, 47( 5): 422- 428 (in Chinese). | |
18 | YANG L, UME I C. Inspection of simulated weld penetration depth using laser-generated Lamb waves and wavelet signal processing[C]∥ AIP Conference Proceedings. Melville: AIP Publishing, 2015: 1386- 1391. |
19 | DEWHURST R J, DUTTON B. Laser/EMAT measurement systems for materials evaluation[J]. Journal of Physics: Conference Series, 2007, 76: 012013. |
20 | CHEN K, FU X, DORANTES-GONZALEZ D J, et al. Laser-generated surface acoustic wave technique for crack monitoring—A review[J]. International Journal of Automation Technology, 2013, 7( 2): 211- 220. |
21 | DUTTON B, BOONSANG S, DEWHURST R J. Modelling of magnetic fields to enhance the performance of an in-plane EMAT for laser-generated ultrasound[J]. Ultrasonics, 2006, 44: e657- e665. |
22 | ROSLI M H, EDWARDS R S, FAN Y. In-plane and out-of-plane measurements of Rayleigh waves using EMATs for characterising surface cracks[J]. NDT & E International, 2012, 49: 1- 9. |
23 | JIAN X, DIXON S, GUO N, et al. Rayleigh wave interaction with surface-breaking cracks[J]. Journal of Applied Physics, 2007, 101( 6): 064906. |
24 | JIAN X, BAILLIE I, DIXON S. Steel billet inspection using laser-EMAT system[J]. Journal of Physics D: Applied Physics, 2007, 40( 5): 1501- 1506. |
25 | DIXON S, BURROWS S E, DUTTON B, et al. Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection[J]. Ultrasonics, 2011, 51( 1): 7- 16. |
26 | ZHANG P H, ZHAO Y, LI P, et al. Numerical simulation of laser-EMAT testing depth of surface crack technology[C]∥ 2021 International Conference on Neural Networks, Information and Communication Engineering, 2021: 11933. |
27 | BOONSANG S, DEWHURST R J. Signal enhancement in Rayleigh wave interactions using a laser-ultrasound/EMAT imaging system[J]. Ultrasonics, 2005, 43( 7): 512- 523. |
28 | 郑伟伟, 马世榜. 利用激光-电磁超声检测钛钢复合板脱粘[J]. 应用激光, 2022, 42( 5): 102- 108. |
ZHENG W W, MA S B. Debonding detection of titanium clad steel plate using laser-electromagnetic ultrasound[J]. Applied Laser, 2022, 42( 5): 102- 108 (in Chinese). | |
29 | SHI W Z, TONG Y S, LU C, et al. Improving laser-EMAT ultrasonic energy conversion efficiency using surface constraint mechanism[J]. Ultrasonics, 2022, 124: 106729. |
30 | WANG C Y, SUN A Y, YANG X Y, et al. Laser-generated Rayleigh wave for width gauging of subsurface lateral rectangular defects[J]. Journal of Applied Physics, 2018, 124( 6): 065104. |
31 | 赵扬, 刘伟, 郭锐, 等. 激光-电磁超声技术的检测原理与应用[J]. 无损检测, 2012, 34( 3): 59- 63. |
ZHAO Y, LIU W, GUO R, et al. Investigation on the principle of laser-EMAT testing technique and its application[J]. Nondestructive Testing Technologying, 2012, 34( 3): 59- 63 (in Chinese). | |
32 | WU J J, ZHAO J B, QIAO H C, et al. The new technologies developed from laser shock processing[J]. Materials, 2020, 13( 6): 1453. |
33 | ZHONG Y J, GAO X R, LUO L, et al. Simulation of laser ultrasonics for detection of surface-connected rail defects[J]. Journal of Nondestructive Evaluation, 2017, 36( 4): 70. |
34 | JIAN X, DIXON S, PALMER S B. In-plane and out-of-plane particle velocity measurement using electromagnetic acoustical transducers[C]∥ IEEE Ultrasonics Symposium. Piscataway: IEEE Press, 2005: 1276- 1279. |
35 | 杨雪娇, 彭飞飞, 李润华. 用激光诱导击穿光谱测量铝合金的激光烧蚀阈值[J]. 强激光与粒子束, 2013, 25( 3): 557- 560. |
YANG X J, PENG F F, LI R H. Determination of laser-ablation threshold of aluminum alloy with laser-induced breakdown spectroscopy[J]. High Power Laser and Particle Beams, 2013, 25( 3): 557- 560 (in Chinese). | |
36 | 李鹏, 赵扬, 周志权, 等. 一种跨介质的空中-水下激光致声探测技术研究[J]. 红外与激光工程, 2021, 50( 5): 63- 71. |
LI P, ZHAO Y, ZHOU Z Q, et al. Research on laser induced acoustic detection of trans-media aerial-underwater[J]. Infrared and Laser Engineering, 2021, 50( 5): 63- 71 (in Chinese). | |
37 | WANG S J, SU R L, CHEN X Y, et al. Numerical and experimental analysis of unidirectional meander-line coil electromagnetic acoustic transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60( 12): 2657- 2664. |
/
〈 |
|
〉 |