Reviews

A review of applications of X⁃ray focused optics in field of pulsar detection

  • Liansheng LI ,
  • Zhiwu MEI ,
  • Jun XIE ,
  • Kun JIANG ,
  • Yongqiang SHI ,
  • Zhen CAO ,
  • Fuchang ZUO
Expand
  • 1.Beijing Institute of Control Engineering,Beijing  100094,China
    2.Zhongguancun Open Laboratory for Optoelectronic Measurement and Intelligent Perception,Beijing  100190,China
    3.China Academy of Space Technology,Beijing  100094,China
    4.Beijing Institute of Tracking and Communication Technology,Beijing  100094,China
E-mail: fenerxu@126.com

Received date: 2022-11-21

  Revised date: 2022-12-09

  Accepted date: 2022-12-20

  Online published: 2023-01-01

Supported by

National Key Research and Development Program(2017YFB0503300);National Natural Science Foundation of China(12175294)

Abstract

Pulsar is a major astronomical event discovered by human beings in the 20th century. X-ray pulsar detection, as one of the important branches of astrophysics and space exploration, plays an important role in the field of basic scientific research and engineering applications, and has long been included in the national major development plan by the United States, Europe, Japan and China. Pulsar detection faces serious problems such as weak self-radiation flow, complex space radiation background, and easy scattering of X-rays, and the high-sensitivity detection of millisecond pulsars is especially extremely challenging. In recent years, the rapid development of X-ray focused optics has provided new methods and perspectives for space astronomy, space science, and pulsar timing and navigation. By reviewing the development process of X-ray focused optics in the past half century, this paper summarizes future pulsar detection demands, and expounds the key technologies, applications and development status of space X-ray focused optics. The future development trend of X-ray focused optical technology and its potential applications in the field of X-ray pulsar detection are also discussed.

Cite this article

Liansheng LI , Zhiwu MEI , Jun XIE , Kun JIANG , Yongqiang SHI , Zhen CAO , Fuchang ZUO . A review of applications of X⁃ray focused optics in field of pulsar detection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 528286 -528286 . DOI: 10.7527/S1000-6893.2022.28286

References

1 LYNE A G, GRAHAM-SMITH F. Pulsar astronomy[M]. 4th ed. Cambridge: Cambridge University Press, 2012.
2 NASA. X-ray telescopes - more information[EB/OL]. (2018-12-11) [2022-11-15]. .
3 LONGAIR M. Antony Hewish (1924–2021): Radioastronomer who won share of Nobel for role in discovering pulsars[EB/OL]. (2021-09-24) [2022-11-15]. .
4 SHEIKH S I. The use of variable celestial X-Ray sources for spacecraft navigation [D]. Maryland: University of Maryland, 2005.
5 姚云峰, 方海燕, 朱金鹏, 等. 北斗卫星导航系统X射线脉冲星可见性分析[J]. 空间控制技术与应用202046(6): 1-9.
  YAO Y F, FANG H Y, ZHU J P, et al. Visibility analysis of X-ray pulsar for BeiDou navigation satellite system[J]. Aerospace Control and Application202046(6): 1-9 (in Chinese).
6 梁昊, 詹亚锋, 尹海亮. X射线脉冲星导航系统选星方法研究[J]. 电子与信息学报201537(10): 2356-2362.
  LIANG H, ZHAN Y F, YIN H L. Research on pulsars selection for X-ray pulsar navigation system[J]. Journal of Electronics & Information Technology201537(10): 2356-2362 (in Chinese).
7 李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报201738(5): 1-9.
  LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering201738(5): 1-9 (in Chinese).
8 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报202069(3): 030702.
  ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica202069(3): 030702 (in Chinese).
9 赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 北京: 中国科学院大学, 2016: 43-92.
  ZHAO D C. Study on design and processing technology of soft X-ray grazing incidence light collection system[D]. Beijing: University of Chinese Academy of Sciences, 2016: 43-92 (in Chinese).
10 KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America194838(9):766–773.
11 NASA. International X-ray observatory[EB/OL]. [2022-11-15]. .
12 MARSIKOVA V. X-ray optics: Wolter[C]∥Proceedings of the International Workshop on Astronomical X-Ray Optics, 2009.
13 NASA. High energy astrophysical observatory series [EB/OL]. (2014-02-06) [2022-11-15]. .
14 NASA. The ROSAT mission[EB/OL]. (2001-07-06) [2022-11-15]. .
15 NASA. Chandra X-ray observatory[EB/OL]. (2022-07-29) [2022-11-15]. .
16 强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报201968(16): 158-163.
  QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica201968(16): 158-163 (in Chinese).
17 NASA. Nuclear spectroscopic telescope array, or NuSTAR. (2012-06-01) [2022-11-15]. .
18 SERLEMITSOS P J, SOONG Y, CHAN K W, et al. The X-ray telescope onboard Suzaku[J]. Publications of the Astronomical Society of Japan200759(S1): S9-S21.
19 NAKAZAWA K, SATO G, KOKUBUN M, et al. Hard X-ray imager onboard hitomi (ASTRO-H)[J]. Journal of Astronomical Telescopes, Instruments, and Systems20184(2): 021410.
20 GENDREAU K C, ARZOUMANIAN Z, ADKINS P W, et al. The Neutron star Interior Composition Explorer (NICER): Design and development[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 420-435.
21 黎月明, 杨健, 左富昌, 等. X射线反射镜NiP芯模超精密车削技术研究[J]. 红外与激光工程202251(7): 380-386.
  LI Y M, YANG J, ZUO F C, et al. Research on ultra-precision turning technology of NiP-coated mandrel for X-ray mirrors[J]. Infrared and Laser Engineering202251(7): 380-386 (in Chinese).
22 BILBRO J. Fabrication of a prototype mirror for AXAF-S[C]∥Space Programs and Technologies Conference and Exhibit. Reston: AIAA, 1993: 4251.
23 ATTINA P, ALIPPI E, CASOLI P, et al. Overview of the SAX X-ray instruments development[C]∥SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 2517X-Ray and EUV/FUV Spectroscopy and Polarimetry, 1995: 182-208.
24 CHAMBURE D D, LAIN R, KATWIJK K V, et al. Lessons learnt from the development of the XMM optics[J]. The International Society for Optical Engineering19993739(16): 2-17.
25 PREDEHL P, ANDRITSCHKE R, BABYSHKIN V, et al. eROSITA on SRG [C]∥Proceedings of SPIE, 20169905: 99051K.
26 李连升, 梅志武, 邓楼楼, 等. 掠入射聚焦型X射线脉冲星望远镜装配误差分析与在轨验证[J]. 机械工程学报201854(11): 49-60.
  LI L S, MEI Z W, DENG L L, et al. Assembly error analysis and in-orbit verification of grazing incidence focusing X-ray pulsar telescope[J]. Journal of Mechanical Engineering201854(11): 49-60 (in Chinese).
27 祝宇轩. EP卫星FXT聚焦镜研究[D]. 长春: 吉林大学, 2022: 101-105.
  ZHU Y X. The study on X-ray focusing mirror of follow-up X-ray telescope on board Einstein probe[D]. Changchun: Jilin University, 2022: 101-105 (in Chinese).
28 CHRISTE S, GLESENER L, BUITRAGO-CASAS C, et al. FOXSI-2: Upgrades of the focusing optics X-ray solar imager for its second flight[J]. Journal of Astronomical Instrumentation20165(1): 1640005.
29 CITTERIO O, CIVITANI M M, ARNOLD J, et al. Progress on precise grinding and polishing of thin glass monolithic shell (towards WFXT)[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011: 397-407.
30 ANGEL J R P. Lobster eyes as X-ray telescopes[J]. The Astrophysical Journal Letters1979233: 364.
31 董联庆, 杨立欣, 苏云, 等. 空间X射线探测技术发展新趋势[J]. 航天返回与遥感202243(4): 67-77.
  DONG L Q, YANG L X, SU Y, et al. Development trend of the space X-ray detection technology[J]. Spacecraft Recovery & Remote Sensing202243(4): 67-77 (in Chinese).
32 BELFIORE A, ESPOSITO P, PINTORE F, et al. Diffuse X-ray emission around an ultraluminous X-ray pulsar[J]. Nature Astronomy20204(2): 147-152.
33 COLLIER M R, PORTER F S, SIBECK D G, et al. Invited Article: First flight in space of a wide-field-of-view soft X-ray imager using lobster-eye optics: Instrument description and initial flight results[J]. The Review of Scientific Instruments201586(7): 071301.
34 BERNARDINI M G, XIE F, SIZUN P, et al. Scientific prospects for spectroscopy of the Gamma-ray burst prompt emission with SVOM[J]. Experimental Astronomy201744(1): 113-127.
35 ISHIKAWA K, EZOE Y, NUMAZAWA M, et al. 12-inch X-ray optics based on MEMS process[J]. Microsystem Technologies201723(7): 2815-2821.
36 FUKUSHIMA A, ISHI D, EZOE Y, et al. Improvement of imaging performance of silicon micropore X-ray optics by ultra long-term annealing[J]. Optics Express202230(14): 25195-25207.
37 BENKHOFF J, MURAKAMI G, BAUMJOHANN W, et al. BepiColombo - mission overview and science goals[J]. Space Science Reviews2021217(8): 90.
38 DELLA MONICA FERREIRA D, JAKOBSEN A C, MASSAHI S, et al. X-ray mirror development and testing for the ATHENA mission[C]∥ SPIE Proceedings Space Telescopes and Instrumentation, 2016.
39 COSINE. Cuatom measurement solution for space, air, field and factory[EB/OL]. .
40 ZHANG W W, ALLGOOD K D, BISHACH M P, et al. High-resolution, lightweight, and lowcost X-ray optics for the Lynx observatory[J]. Journal of Astronomical Telescopes, Instruments, and Systems20195(2): 021012.
41 WANG Y D, ZHANG S N, GE M, et al. Fast on-orbit pulse phase estimation of X-ray crab pulsar for XNAV flight experiments[J]. IEEE Transactions on Aerospace and Electronic System2022, doi: 10.1109/TAES.2022.3216822 .
Outlines

/