ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Lift enhancement mechanism of dielectric elastic membrane airfoil
Received date: 2022-11-28
Revised date: 2022-12-13
Accepted date: 2022-12-26
Online published: 2022-12-27
Supported by
National Natural Science Foundation of China(11972307);Fundamental Research Foundation(JCKY2021204B141)
Active morphing of bat wings can gain high maneuverability and efficiency in low Reynolds number flow, offering a novel aerodynamic design concept for smart aerocraft. Here, the dielectric elastic high polymer material is directly applied to the design of airfoil. A dielectric elastic membrane airfoil with semi-active control function is proposed based on the aero-electro-structural behaviors of dielectric elastic polymer actuators. The dynamic modeling of membrane wings is established according to the thermodynamics theory to describe complex electromechanical behaviors. As for fluid, a high-fidelity aero-electromagnetic-structural coupling model of the membrane wings is established using the high-precision CFD/CSD coupling technique and is verified afterwards. The results show that the lift of the dielectric elastic membrane airfoil under passive control is 12.33% higher than that of the rigid airfoil at an angle of attack of 14°, and that the contribution ratio of the cambered deformation and vibration effect of the airfoil to the lift enhancement is 3∶2. The dielectric elastic membrane airfoil under semi-active control shows a lift enhancement of more than 10% only at a specific voltage. The methods proposed and research conclusions will provide important technical support for aerodynamics and control design of smart aero-vehicles.
Wei KANG , Shilin HU , Yanqing WANG . Lift enhancement mechanism of dielectric elastic membrane airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(18) : 128318 -128318 . DOI: 10.7527/S1000-6893.2022.28318
1 | MUELLER T J, DELAURIER J D. Aerodynamics of small vehicles[J]. Annual Review of Fluid Mechanics, 2003, 35: 89-111. |
2 | SONG A, BREUER K. Dynamics of a compliant membrane as related to mammalian flight[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
3 | ROJRATSIRIKUL P, WANG Z, GURSUL I. Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers[J]. Experiments in Fluids, 2009, 46(5): 859-872. |
4 | ROJRATSIRIKUL P, GENC M S, WANG Z, et al. Flow-induced vibrations of low aspect ratio rectangular membrane wings[J]. Journal of Fluids and Structures, 2011, 27(8): 1296-1309. |
5 | SUN X J, ZHANG X Y, SU Z A, et al. Experimental study of aerodynamic characteristics of partially flexible NACA0012 airfoil[J]. AIAA Journal, 2022, 60(9): 5386-5400. |
6 | HAYS M R, MORTON J, DICKINSON B, et al. Aerodynamic control of micro air vehicle wings using electroactive membranes[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(7): 862-878. |
7 | CURET O M, CARRERE A, WALDMAN R, et al. Aerodynamic characterization of a wing membrane with variable compliance[J]. AIAA Journal, 2014, 52(8): 1749-1756. |
8 | LIAN Y S, SHYY W. Three-dimensional fluid-structure interactions of a membrane wing for micro air vehicle applications[C]∥Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston : AIAA, 2003. |
9 | LIAN Y S, SHYY W, VIIERU D, et al. Membrane wing aerodynamics for micro air vehicles[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 425-465. |
10 | GORDNIER R E. High fidelity computational simulation of a membrane wing airfoil[J]. Journal of Fluids and Structures, 2009, 25(5): 897-917. |
11 | MOLKI M, BREUER K. Oscillatory motions of a prestrained compliant membrane caused by fluid-membrane interaction[J]. Journal of Fluids and Structures, 2010, 26(3): 339-358. |
12 | BUOSO S, PALACIOS R. Electro-aeromechanical modelling of actuated membrane wings[J]. Journal of Fluids and Structures, 2015, 58: 188-202. |
13 | BUOSO S, PALACIOS R. Viscoelastic effects in the aeromechanics of actuated elastomeric membrane wings[J]. Journal of Fluids and Structures, 2016, 63: 40-56. |
14 | 白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学: 物理学 力学 天文学, 2015, 45(2): 46-57. |
BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low incidence[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(2): 46-57 (in Chinese). | |
15 | 肖天航, 昂海松, 周新春. 柔性扑翼非定常流场的数值计算方法[J]. 航空学报, 2009, 30(6): 990-999. |
XIAO T H, ANG H S, ZHOU X C. Numerical method for unsteady flows of flexible flapping-wings[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 990-999 (in Chinese). | |
16 | 孟令兵, 昂海松, 肖天航. 基于CFD/CSD方法的蜻蜓柔性翼气动特性分析[J]. 航空动力学报, 2014, 29(9): 2063-2069. |
MENG L B, ANG H S, XIAO T H. Analysis of aerodynamic characteristics of flexible wing of dragonfly based on CFD/CSD method[J]. Journal of Aerospace Power, 2014, 29(9): 2063-2069 (in Chinese). | |
17 | 康伟, 刘磊, 徐敏, 等. 低雷诺数下翼面局部振动增升机理研究[J]. 航空学报, 2015, 36(11): 3557-3566. |
KANG W, LIU L, XU M, et al. Lift enhancement mechanism for local oscillation of airfoil surface at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3557-3566 (in Chinese). | |
18 | 康伟, 张家忠. 翼型局部弹性自激振动的增升减阻效应研究[J]. 西安交通大学学报, 2011, 45(5): 94-101. |
KANG W, ZHANG J Z. Numerical analysis of lift enhancement and drag reduction by self-induced vibration of localized elastic airfoil[J]. Journal of Xi’an Jiaotong University, 2011, 45(5): 94-101 (in Chinese). | |
19 | KANG W, XU M, YAO W G, et al. Lock-in mechanism of flow over a low-Reynolds-number airfoil with morphing surface[J]. Aerospace Science and Technology, 2020, 97: 105647. |
20 | 袁先旭, 陈坚强, 杜雁霞, 等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报, 2021, 42(9): 625733. |
YUAN X X, CHEN J Q, DU Y X, et al. Research progress on fundamental CFD issues in National Numerical Windtunnel project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625733 (in Chinese). | |
21 | 王将升, 王晋军. 多段翼低雷诺数绕流涡-边界层相互干扰[J]. 航空学报, 2023, 44(12): 127652. |
WANG J S, WANG J J. Vortex/boundary-layer interactions over multi-element airfoil at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127652 (in Chinese). | |
22 | SUO Z G, ZHAO X H, GREENE W H. A nonlinear field theory of deformable dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 467-486. |
23 | SUO Z G. Theory of dielectric elastomers[J]. Acta Mechanica Solida Sinica, 2010, 23(6): 549-578. |
24 | SANCHEZ R, PALACIOS R, ECONOMON T D, et al. Optimal actuation of dielectric membrane wings using high-fidelity fluid-structure modelling[C]∥58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017. |
/
〈 |
|
〉 |