special column

Influence mechanism of aspect ratio on fluid-structure interaction characteristics of serpentine nozzle

  • Qiulin LI ,
  • Li ZHOU ,
  • Peng SUN ,
  • Jingwei SHI ,
  • Zhanxue WANG
Expand
  • School of Power and Energy,Northwestern Polytechnical University,Xi’an  710129,China
E-mail: zhouli@nwpu.edu.cn

Received date: 2022-10-31

  Revised date: 2022-11-16

  Accepted date: 2022-12-20

  Online published: 2022-12-27

Supported by

National Natural Science Foundation of China(52076180);National Science and Technology Major Project (J2019-Ⅱ-0015-0036);Funds of Distinguished Young Scholars of Shaanxi Province(2021JC-10);Science Center for Gas Turbine Project (P2022-B-I-002-001, P2022-B-Ⅱ-010-001);Fundamental Research Funds for the Central Universities

Abstract

The influence of the aspect ratio on two-way fluid-structure interaction characteristics of double serpentine nozzles for turbofan engines was investigated by the serial two-way loosely coupled algorithm. The results show that the structural displacement characteristics of the serpentine nozzle are mainly located in the downstream channel of the first bend and the exit upper wall of the equivalent section of the nozzle, and that with the increase of the aspect ratio, the displacement of the downstream area of the first bend of the nozzle gradually increases, while that of the exit of the nozzle first increases and then decreases. The maximum displacements of the upper and lower walls of the serpentine nozzle both appear in the downstream wall of the first bend. Because of the outward expansion of the nozzle outlet wall, the outlet aspect ratio decreases compared with the design value under fluid-structure interaction. The fluid-structure interaction influences the flow field characteristics and flow losses of different aspect ratios. The flow vortex caused by the deformation of the nozzle structure has a large influence on the downstream flow of the nozzle with a small aspect ratio. In this case, the axial bending angle of the nozzle decreases and the thrust vector angle decreases. In the case of large aspect ratios, the nozzle axial bending angle increases with the increase of the aspect ratio, and the thrust vector angle increases. At an aspect ratio of 2, the total pressure recovery coefficient is reduced by 0.56%, the flow coefficient 2.67% and the thrust coefficient 0.72%, while the three are reduced by 0.36%, 4.34% and 1.37%, respectively, when the aspect ratio is 10.

Cite this article

Qiulin LI , Li ZHOU , Peng SUN , Jingwei SHI , Zhanxue WANG . Influence mechanism of aspect ratio on fluid-structure interaction characteristics of serpentine nozzle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(14) : 628204 -628204 . DOI: 10.7527/S1000-6893.2022.28204

References

1 LUO P, ZHENG M. Thermal-fluid-solid coupling analysis of aero-engine nozzle[J]. Journal of Aerospace Science and Technology20164(4): 85-95.
2 CROWE D S, MARTIN C L. Effect of geometry on exit temperature from serpentine exhaust nozzles:AIAA-2015-1670[R]. Reston: AIAA, 2015.
3 DALENBRING M, SMITH J. Simulation of S-duct dynamics using fluid-structure coupled CFD:AIAA-2006-2981[R]. Reston: AIAA, 2006.
4 DALENBRING M. Analysis of material and structure used within the FoT25 project propulsion integration: FOI-R-2024-SE[R]. Stockholm: FOI-Swedish Defence Research Agency.
5 刘超峰, 邱菊. 气动弹性的流固耦合分析方法[M]. 北京: 北京航空航天大学出版社, 2016:1-7.
  LIU C F, QIU J. Fluid-solid coupling analysis method of aeroelasticity[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016:1-7 (in Chinese).
6 叶正寅, 张伟伟, 史爱明. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010:25-30.
  YE Z Y, ZHANG W W, SHI A M. Fundamentals of fluid-structure coupling and its application[M]. Harbin: Harbin Institute of Technology Press, 2010:25-30 (in Chinese).
7 SMITH J, DALENBRING M. Aeroelastic simulation Of S-duct dynamics using structure-coupled CFD[C]∥ 26th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2006: 1-8.
8 NIGAM N, AYYALASOMAYAJULA S K, TANG Y Y, et al. Design optimization of advanced exhaust systems:AIAA-2017-3331[R]. Reston: AIAA, 2017.
9 URBANCZYK P S, ALONSO J J, NIGAM N, et al. Coupled multiphysics analysis for design of advanced exhaust systems:AIAA-2017-0799[R]. Reston: AIAA, 2017.
10 MA X T, TIAN K, LI H Q, et al. Concurrent multi-scale optimization of hybrid composite plates and shells for vibration[J]. Composite Structures2020233: 111635.
11 孙鹏, 周莉, 王占学, 等. 双S弯喷管的流固耦合特性研究[J]. 推进技术202243(10): 158-167.
  SUN P, ZHOU L, WANG Z X, et al. Study on fluid-solid coupling characteristics of double S-bend nozzle[J]. Journal of Propulsion Technology202243(10): 158-167 (in Chinese).
12 顾瑞, 徐惊雷, 赵强, 等. 不同几何调节位置上的单边膨胀喷管流固耦合计算[J]. 推进技术201334(3): 300-306.
  GU R, XU J L, ZHAO Q, et al. Primary analysis of fluid-structure interaction of adjustable single expansion ramp nozzle with different cowl position[J]. Journal of Propulsion Technology201334(3): 300-306 (in Chinese).
13 GU R, XU J L, MO J W, et al. Primary analysis of fluid-structure interaction of adjustable SERN on the different cowl position:AIAA-2012-5930[R]. Reston: AIAA, 2012.
14 孙啸林. 低可探测S弯喷管设计及性能评估方法研究[D]. 西安: 西北工业大学, 2018:77-82.
  SUN X L. Study on design and performance evaluation method of low detectable S-bend nozzle[D]. Xi’an: Northwestern Polytechnical University, 2018:77-82 (in Chinese).
15 RAO A N, KUSHARI A, JAISWAL G K. Effect of nozzle geometry on flowfield for high subsonic jets[J]. Journal of Propulsion and Power201834(6): 1596-1608.
16 SUN X L, WANG Z X, ZHOU L, et al. Internal flow and external jet characteristics of double serpentine nozzle with different aspect ratio[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering2017233(2): 095441001773732.
17 矫丽颖, 周莉, 王占学, 等. 出口宽高比对与机身融合双S弯喷管内流及推力轴线影响研究[R]. 北京: 中国科协航空发动机产学联合体, 2019.
  JIAO L Y, ZHOU L, WANG Z Xet al. Export to high ratios and the fuselage fusion double serpentine nozzle flow and thrust axis impact study [R]. Beijing: CAST Allianle for Aero-Engine Industry and Academy, 2019 (in Chinese).
18 程稳. S弯喷管红外辐射特性预测及优化设计方法[D].西安: 西北工业大学, 2019:65-70.
  CHENG W. Prediction and optimization design method of infrared radiation characteristics of S-bend nozzle[D]. Xi’an: Northwestern Polytechnical University, 2019:65-70 (in Chinese).
19 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报201435(2): 303-319.
  ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica201435(2): 303-319 (in Chinese).
20 LEE C, BOEDICKER C. Subsonic diffuser design and performance for advanced fighter aircraft:AIAA-1985-3073[R]. Reston: AIAA, 1985.
21 郭帅. 高超声速飞行器关键部件的多物理场耦合研究[D]. 南京: 南京航空航天大学, 2016:12-14.
  GUO S. Study on multi-physical field coupling of key components of hypersonic vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016:12-14 (in Chinese).
22 BROWN A, RUF J, MCDANIELS D. Recovering aerodynamic side loads on rocket nozzles using quasi-static strain-gage measurements:AIAA-2009-2681[R]. Reston: AIAA, 2009.
23 AGHABABAIE A, TAYLOR N. Modelling side loads in separated rocket nozzles:AIAA-2011-2687[R]. Reston, AIAA, 2011.
24 周莉, 孟钰博, 王占学. S弯收扩喷管流动特性数值研究[J]. 推进技术202142(1): 103-113, 2.
  ZHOU L, MENG Y B, WANG Z X. Numerical study on flow characteristics of serpentine convergent-divergent nozzle[J]. Journal of Propulsion Technology202142(1): 103-113, 2 (in Chinese).
Outlines

/