Electronics and Electrical Engineering and Control

UAV formation cooperative navigation algorithm based on improved particle filter

  • Jingxuan YUE ,
  • Hongru WANG ,
  • Dongqin ZHU ,
  • Chupalov ALEKSANDR
Expand
  • College of Information and Communication Engineering,Harbin Engineering University,Harbin  150001,China

Received date: 2022-09-13

  Revised date: 2022-11-04

  Accepted date: 2022-12-20

  Online published: 2022-12-27

Supported by

Central University Foundation for Basic Research(3072022CF0801)

Abstract

To address the problem of poor cooperative navigation of master-slave UAV swarms in complex environments with time-varying non-Gaussian noise due to external interference, an improved Particle Filter (PF) algorithm is proposed to improve navigation accuracy and reduce the accuracy requirements of the slave measurement equipment. Firstly, the observation model is established by taking the high-precision Inertial Navigation System (INS) and Global Position System (GPS) navigation information from the host machine as the reference and combining it with the low-precision sensors on the slave machine. Then, the fusion of multi-source navigation information is achieved using an improved PF algorithm. For the importance probability density function selection and particle degradation problems of PF, the Levenberg-Marquardt iterative method is introduced on the basis of Extended Particle Filter (EPF) to ensure the stability and convergence of the filter. In the resampling phase, the fast resampling method is proposed to classify the obtained particle set, and the medium weight particles are not resampled anymore, while the rest of the particles are optimized in the normalization process using adaptive weight factors to make the obtained sample particle weights more uniform, thus improving the computational efficiency and navigation real-time. The simulation results show that compared with other PFs, the proposed algorithm can effectively improve the accuracy of Unmanned Aerial Vehicle (UAV) formation cooperative navigation and has certain practical value.

Cite this article

Jingxuan YUE , Hongru WANG , Dongqin ZHU , Chupalov ALEKSANDR . UAV formation cooperative navigation algorithm based on improved particle filter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(14) : 327995 -327995 . DOI: 10.7527/S1000-6893.2022.27995

References

1 OLLERO A, MAZA I. Multiple heterogeneous unmanned aerial vehicles[M]. Berlin: Springer, 2007.
2 谷旭平, 唐大全. 基于联邦滤波算法的无人机集群分层协同导航[J]. 系统工程与电子技术202244(3): 967-976.
  GU X P, TANG D Q. Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm[J]. Systems Engineering and Electronics202244(3): 967-976 (in Chinese).
3 WANG S Z, ZHAN X Q, ZHAI Y W, et al.Performance estimation for Kalman filter based multi-agent cooperative navigation by employing graph theory[J].Aerospace Science and Technology2021112:106628.
4 XU L, LIU J, XIE L F, et al. Multi-UAV navigation and recharging for fair and sustainable coverage in wireless networks[C]∥ Proceedings of the 3rd International Conference on Advanced Information Science and System. New York: ACM, 2021: 1-6.
5 SECO-GRANADOS G, LóPEZ-SALCEDO J, JIMéNEZ- BA?OS D, et al. Challenges in indoor global navigation satellite systems: Unveiling its core features in signal processing[J]. IEEE Signal Processing Magazine201229(2): 108-131.
6 DEHGHANI M A, MENHAJ M B. Integral sliding mode formation control of fixed-wing unmanned aircraft using seeker as a relative measurement system[J]. Aerospace Science and Technology201658: 318-327.
7 许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时20174(4): 1-9.
  XU X W, LAI J Z, LV P, et al. A literature review on the research status and progress of cooperative navigation technology for multiple UAVs[J]. Navigation Positioning and Timing20174(4): 1-9 (in Chinese).
8 陈丹琪, 金国栋, 谭力宁, 等. 一种基于KL-AEPF的无人机侦察移动目标定位算法[J]. 仪器仪表学报201940(9): 227-236.
  CHEN D Q, JIN G D, TAN L N, et al. A KL-AEPF-based UAV reconnaissance moving target localization algorithm[J]. Chinese Journal of Scientific Instrument201940(9): 227-236 (in Chinese).
9 胡士强, 敬忠良. 粒子滤波算法综述[J]. 控制与决策200520(4): 361-365.
  HU S Q, JING Z L. Overview of particle filter algorithm[J]. Control and Decision200520(4): 361-365 (in Chinese).
10 KUPTAMETEE C, AUNSRI N. A review of resampling techniques in particle filtering framework[J]. Measurement2022193: 110836.
11 张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报201941(10): 2294-2301.
  ZHANG Y, GAO L J. Target tracking with underwater sensor networks based on Grubbs criterion and improved particle filter algorithm[J]. Journal of Electronics & Information Technology201941(10): 2294-2301 (in Chinese).
12 AGGARWAL P, SYED Z, EL-SHEIMY N. Hybrid extended particle filter (HEPF) for integrated civilian navigation system[C]∥ 2008 IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2008: 984-992.
13 VAN DER MERWE R, DOUCET A, DE FREITAS N, et al. The unscented particle filter[C]∥Proceedings of the 13th International Conference on Neural Information Processing Systems.Cambridge: MIT Press,2000: 584-590.
14 FAN Y, ZHANG Y G, WANG G Q, et al. Maximum correntropy based unscented particle filter for cooperative navigation with heavy-tailed measurement noises[J]. Sensors (Basel, Switzerland)201818(10): 3183.
15 孙伟, 刘经洲. 基于Huber鲁棒容积裂变粒子滤波的协同导航方法[J]. 仪器仪表学报202243(2): 166-175.
  SUN W, LIU J Z. Cooperative navigation method based on the Huber robust cubature fission particle filter[J]. Chinese Journal of Scientific Instrument202243(2): 166-175 (in Chinese).
16 LI T, SUN S, SATTAR T P. Adapting sample size in particle filters through KLD-resampling[J]. Electronics Letters201349(12): 740-742.
17 ZHANG X Y, LIU D, LEI B Y, et al. An intelligent particle filter with resampling of multi-population cooperation[J]. Digital Signal Processing2021115: 103084.
18 YANG J, CUI X R, LI J, et al. Particle filter algorithm optimized by genetic algorithm combined with particle swarm optimization[J]. Procedia Computer Science2021187: 206-211.
19 ZHANG M, JIA H T, SHEN Z. Improved resampling procedure based on genetic algorithm in particle filter[J]. Journal of University of Electronic Science and Technology of China201544(3): 344-349.
20 刘海涛, 林艳明, 陈永华, 等. 基于遗传算法的智能粒子滤波重采样策略研究[J]. 电子与信息学报202143(12): 3459-3466.
  LIU H T, LIN Y M, CHEN Y H, et al. A study on resampling strategy of intelligent particle filter based on genetic algorithm[J]. Journal of Electronics & Information Technology202143(12): 3459-3466 (in Chinese).
21 国强, 刘雪萌, 周凯. 一种改进粒子滤波算法实现的多径参数估计[J]. 西安电子科技大学学报202249(3): 120-128.
  GUO Q, LIU X M, ZHOU K. Multipath parameter estimation realized by an improved particle filter algorithm[J]. Journal of Xidian University202249(3): 120-128 (in Chinese).
22 XU W J, LI J Y, BAI J J, et al. Ship tracking based on the fusion of Kalman filter and particle filter[J]. Journal of Physics: Conference Series20212113(1): 012017.
23 CHEN M X, XIONG Z, SONG F Y, et al. Cooperative navigation for low-cost UAV swarm based on Sigma point belief propagation[J]. Remote Sensing202214(9): 1976.
24 LI L Q, JI H B, LUO J H. The iterated extended Kalman particle filter[C]∥ IEEE International Symposium on Communications and Information Technology, 2005. Piscataway: IEEE Press, 2006: 1213-1216.
25 杨柳, 陈艳萍. 一种新的Levenberg-Marquardt算法的收敛性[J]. 计算数学200527(1): 55-62.
  YANG L, CHEN Y P. On the convergence of a new Levenberg-Marquardt method[J]. Mathematica Numerica Sinica200527(1): 55-62 (in Chinese).
26 冯驰, 王萌, 汲清波. 粒子滤波器重采样算法的分析与比较[J]. 系统仿真学报200921(4): 1101-1105.
  FENG C, WANG M, JI Q B. Analysis and comparison of resampling algorithms in particle filter[J]. Journal of System Simulation200921(4): 1101-1105 (in Chinese).
Outlines

/