Electronics and Electrical Engineering and Control

Comparative study on optimal control methods of independent excitation DC power generation system

  • Yuhang XIA ,
  • Yu WANG
Expand
  • College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
E-mail: Wanghaohao@163.com

Received date: 2022-09-06

  Revised date: 2022-11-23

  Accepted date: 2022-12-10

  Online published: 2022-12-27

Supported by

National Natural Science Foundation of China(51977107);Six Peaks of Talents in Jiangsu Province(XNYQC-005);Aviation Science Foundation of China(2020HKZ0001)

Abstract

Traditional voltage loop Proportional Integral (PI) control cannot take into account the steady-state and dynamic performance of the Direct Current (DC) power generation system. The Capacitor-Energy-based Control (CEC) method is proposed to improve the dynamic performance of the independently excited DC power generation system. The CEC outer loop still uses PI control. In this paper, a Generalized Predictive Control (GPC) method is proposed based on load feedback. The GPC method is compared with the CEC method based on the PI control framework. The characteristics of CEC and GPC methods are analyzed in terms of principles. It is found that the high proportional gain of the CEC method can accelerate the dynamic response of the system, but the integration link of the outer loop conflicts with the load current feedback, which will affect the voltage steady-state accuracy of the system. The system transfer functions for the CEC and GPC methods are constructed. The control parameters are optimized to eliminate anti-load current disturbance, and the simulation verification is carried out. The influence of capacitor parameter mismatch on the two control methods is discussed. Finally, the comparative experiment verifies the correctness of the analysis of the two optimal control methods in this paper. The experimental results show that the GPC and CEC methods with optimized control parameters are better than the traditional voltage-loop PI control in dynamic performance, and GPC has stronger robustness than CEC.

Cite this article

Yuhang XIA , Yu WANG . Comparative study on optimal control methods of independent excitation DC power generation system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(16) : 327975 -327975 . DOI: 10.7527/S1000-6893.2022.27975

References

1 乔东伟, 王秀和, 朱常青. 新型混合励磁无刷爪极发电机的磁场调节特性分析及试验研究[J]. 中国电机工程学报201333(9): 115-121.
  QIAO D W, WANG X H, ZHU C Q. Investigation of Flux regulation performance and experimental validation of novel hybrid excitation brushless claw-pole alternators[J]. Proceedings of the CSEE201333(9): 115-121 (in Chinese).
2 钟鸿敏, 左曙光, 吴旭东, 等. 电励磁爪极发电机气隙磁场与径向电磁力的解析计算模型[J]. 电工技术学报201732(7): 49-58.
  ZHONG H M, ZUO S G, WU X D, et al. Analytic model of air gap magnetic field and radial electromagnetic force for electric excitation claw pole alternator[J]. Transactions of China Electrotechnical Society201732(7): 49-58 (in Chinese).
3 WANG Y L, NUZZO S, ZHANG H, et al. Challenges and opportunities for wound field synchronous generators in future more electric aircraft[J]. IEEE Transactions on Transportation Electrification20206(4): 1466-1477.
4 张卓然, 李进才, 韩建斌, 等. 多电飞机大功率高压直流起动发电机系统研究与实现[J]. 航空学报202041(2): 324-335.
  ZHANG Z R, LI J C, HAN J B, et al. Research and implementation of highpower highvoltage DC brushless starter generator system for more-electric-aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(2): 324-335 (in Chinese).
5 刘细平, 左亮平, 刁艳美, 等. 轴向磁通切换混合励磁电机励磁控制系统[J]. 电工技术学报201328(10): 97-102.
  LIU X P, ZUO L P, DIAO Y M, et al. Excitation control system of axial flux-switching hybrid excited machine[J]. Transactions of China Electrotechnical Society201328(10): 97-102 (in Chinese).
6 NASR A, HLIOUI S, GABSI M, et al. Design optimization of a hybrid-excited flux-switching machine for aircraft-safe DC power generation using a diode bridge rectifier[J]. IEEE Transactions on Industrial Electronics201764(12): 9896-9904.
7 WANG Q S, NIU S X. Design, modeling, and control of a novel hybrid-excited flux-bidirectional-modulated generator-based wind power generation system[J]. IEEE Transactions on Power Electronics201833(4): 3086-3096.
8 阳习党, 翟小飞, 马伟明, 等. 整流充电发电机组励磁系统[J]. 电工技术学报201429(5): 54-61.
  YANG X D, ZHAI X F, MA W M, et al. Excitation system of rectified charging generators[J]. Transactions of China Electrotechnical Society201429(5): 54-61 (in Chinese).
9 赵耀, 王慧贞, 张海波, 等. 基于励磁电流前馈调节的航空直流发电系统建模分析[J]. 航空学报201536(4): 1230-1239.
  ZHAO Y, WANG H Z, ZHANG H B, et al. Modeling and analysis of aero DC generation system based on excitation current feedforward regulation[J]. Acta Aeronautica et Astronautica Sinica201536(4): 1230-1239 (in Chinese).
10 GAO F, BOZHKO S, COSTABEBER A, et al. Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft[J]. IEEE Transactions on Industrial Electronics201764(12): 9271-9281.
11 PATIN N, VIDO L, MONMASSON E, et al. Control of a hybrid excitation synchronous generator for aircraft applications[J]. IEEE Transactions on Industrial Electronics200855(10): 3772-3783.
12 王莉, 曹小庆, 张卓然, 等. 电励磁双凸极无刷直流发电机非线性PI调压技术的研究[J]. 中国电机工程学报200626 (5): 153-158.
  WANG L, CAO X Q, ZHANG Z R, et al. Research of nonlinear PI voltage regulation for doubly salient brushless DC generator[J]. Proceedings of the CSEE200626 (5): 153-158 (in Chinese).
13 翟小飞, 马伟明, 欧阳斌, 等. 前馈控制在脉冲整流发电机数字励磁控制系统中的应用[J]. 电工技术学报201328(7): 151-156.
  ZHAI X F, MA W M, OUYANY B, et al. Application of feed forward control in the excitation system of pulse rectified generator[J]. Transactions of China Electrotechnical Society201328(7): 151-156 (in Chinese).
14 刘金利, 马伟明, 翟小飞, 等. 带脉冲负载多相储能发电机励磁控制系统设计[J]. 海军工程大学学报201931(3): 32-38.
  LIU J L, MA W M, ZHAI X F, et al. Design of excitation control system for multi-phase energy storage generator with pulse load[J]. Journal of Naval University of Engineering201931(3): 32-38 (in Chinese).
15 XU Y W, ZHANG Z R, BIAN Z M, et al. Capacitor-energy-based control of doubly salient brushless DC generator for dynamic performance optimization[J]. IEEE Transactions on Energy Conversion202035(4): 1886-1896.
16 CHOI D K, LEE K B. Dynamic performance improvement of AC/DC converter using model predictive direct power control with finite control set[J]. IEEE Transactions on Industrial Electronics201562(2): 757-767.
17 VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al. Model predictive control for power converters and drives: advances and trends[J]. IEEE Transactions on Industrial Electronics201764(2): 935-947.
18 薛生辉, 曲俊海, 王永宏, 等. 比例-积分控制加广义预测控制算法及其应用[J]. 控制理论与应用201835(9): 1320-1330.
  XUE S H, QU J H, WANG Y H, et al. Proportional-integral control plus generalized predictive control algorithm and its application[J]. Control Theory & Applications201835(9): 1320-1330 (in Chinese).
19 王安鹏, 黄旭珍, 李立毅, 等. 永磁直线同步电机的变权重系数多步模型预测电流控制方法[J]. 中国电机工程学报202242(22): 8332-8343.
  WANG A P, HUANG X Z, LI L Y, et al. Variable weight coefficient multi-step model predictive current control method for permanent magnet linear synchronous motor[J]. Proceedings of the CSEE202242(22): 8332-8343 (in Chinese).
20 WANG T, ZHU Z Q, FREIRE N M A, et al. Generalized predictive DC-link voltage control for grid-connected converter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics202210(2): 1489-1506.
21 ZHANG X Y, SHI T N, WANG Z Q, et al. Generalized predictive contour control of the biaxial motion system[J]. IEEE Transactions on Industrial Electronics201865(11): 8488-8497.
Outlines

/