ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Surge test on newly developing civil turboshaft engine under take⁃off condition
Received date: 2022-10-31
Revised date: 2022-11-15
Accepted date: 2022-12-07
Online published: 2022-12-22
Supported by
Project for Engine Model Development
To further investigate the surge influence on the safe operation of engines under the large power and high risk conditions, we perform the engine surge test under the take-off condition by rapidly inducing external high pressure air at the compressor outlet on a newly developing civil turboshaft engine platform, and comprehensively analyze the unsteady phenomena of fluid-solid-heat-acoustic coupling. The test results show that several obvious blasting, flaming, and smoking phenomena occur with significant fluctuations of engine flow parameters during surge under the take-off condition. Multiple surges may be rapidly excited once surge occurs during take-off due to the high gas temperature. By using the appropriate fuel control law and stator vane deviation diagnosis strategy, the engine control system is able to effectively alleviate the gas over-temperature phenomenon during the surge, and facilitate rapid recovery of the compressor stator vane angel and quit of the engine from surge. The base-frequency amplitude of the engine rotor has no obvious change during the surge, and the radial total vibration values in the engine case do not exceed the limit value. The engine capability of withstanding surge under the take-off condition has been verified.
Key words: surge test; unsteady flow; turboshaft engine; take-off condition; control law
Gaiqi LI , Dongyang MA , Du LI , Shaorong LIU , Yanmei YANG . Surge test on newly developing civil turboshaft engine under take⁃off condition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(14) : 628190 -628190 . DOI: 10.7527/S1000-6893.2022.28190
1 | 桂幸民, 滕金芳, 刘宝杰. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014: 170-176. |
GUI X M, TENG J F, LIU B J. Compressor aerothermodynamics and its applications in aircraft engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 170-176 (in Chinese). | |
2 | 中国民用航空局. 航空发动机适航规定: CCAR33-R2 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. Aeroengine airworthiness regulations: CCAR33-R2 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
3 | PAN T Y, YAN Z Q, SUN D K, et al. Effect of system response on partial surge initiated instability in a transonic axial flow compressor[J]. Chinese Journal of Aeronautics, 2022, 35(2): 117-127. |
4 | COURTIADE N, OTTAVY X. Experimental study of surge precursors in a high-speed multistage compressor[J]. Journal of Turbomachinery, 2013, 135(6): 061018. |
5 | PULLAN G, YOUNG A M, DAY I J, et al. Origins and structure of spike-type rotating stall[J]. Journal of Turbomachinery, 2015, 137(5): 051007. |
6 | CAMERON J D, MORRIS S C. Analysis of axial compressor stall inception using unsteady casing pressure measurements[J]. Journal of Turbomachinery, 2013, 135(2): 021036. |
7 | 夏联, 顾杨, 崔健, 等. 多级轴流压气机不同工况下失速/喘振试验研究[J]. 燃气涡轮试验与研究, 2001, 14(3): 16-23. |
XIA L, GU Y, CUI J, et al. An experimental investigation of stall/surge of a multistage axial compressor in different conditions[J]. Gas Turbine Experiment and Research, 2001, 14(3): 16-23 (in Chinese). | |
8 | 杜军, 文璧, 刘元是. 轴流压气机喘振状态下的声学特征及诊断方法[J]. 燃气涡轮试验与研究, 2020, 33(5): 33-37. |
DU J, WEN B, LIU Y S. Study on acoustic characteristics and diagnostic method of axial compressor under surge condition[J]. Gas Turbine Experiment and Research, 2020, 33(5): 33-37 (in Chinese). | |
9 | BENNETT L G N, ALLAN W D E. Examination of rotating stall inception in a small high speed axial compressor[C]∥ Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York:ASME, 2010: 155-165. |
10 | SHENG H L, CHEN Q, ZHANG J, et al. A high-safety active/passive hybrid control approach for compressor surge based on nonlinear model predictive control[J]. Chinese Journal of Aeronautics, 2023,36(1):396-412. |
11 | LEE J K, KIM C, YANG S, et al. Surge line measurement of a gas turbine engine by fuel spiking test[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
12 | 屈霁云, 马明明, 王小峰, 等. 某型发动机喘振特征分析及消喘系统验证试验[J]. 航空动力学报, 2010, 25(6): 1291-1296. |
QU J Y, MA M M, WANG X F, et al. Investigation of surge characteristics and surge eliminating system verification based on a certain engine[J]. Journal of Aerospace Power, 2010, 25(6): 1291-1296 (in Chinese). | |
13 | 马燕荣, 马明明, 王小峰. 发动机飞行台插板空中逼喘试验研究[J]. 燃气涡轮试验与研究, 2010, 23(3): 18-21. |
MA Y R, MA M M, WANG X F. Investigation on engine surge test in the air with disturbed board in flight bed[J]. Gas Turbine Experiment and Research, 2010, 23(3): 18-21 (in Chinese). | |
14 | 闫思齐, 李本威, 王永华, 等. 基于台架试验的涡轴发动机喘振发生位置规律[J]. 航空动力学报, 2022, 37(2): 263-273. |
YAN S Q, LI B W, WANG Y H, et al. Position rule of turboshaft engine surge based on bench test[J]. Journal of Aerospace Power, 2022, 37(2): 263-273 (in Chinese). | |
15 | 闫思齐, 张赟, 李本威, 等. 基于声压信号的某型涡轴发动机喘振识别[J/OL]. 航空动力学报, (2022-07-26)[2022-10-27]. . |
YAN S Q, ZHANG Y, LI B W, et al. Surge identification of a turboshaft engine based on sound pressure signal[J/OL]. Journal of Aerospace Power, (2022-07-26)[2022-10-27]. (in Chinese). | |
16 | 旷桂兰, 姚峥嵘, 王道波, 等. 某涡轴发动机整机逼喘试验研究[J]. 航空动力学报, 2009, 24(3): 588-595. |
KUANG G L, YAO Z R, WANG D B, et al. Surge experimentation research for a whole turbine-shaft engine[J]. Journal of Aerospace Power, 2009, 24(3): 588-595 (in Chinese). | |
17 | 旷桂兰, 王道波, 吴伟力, 等. 分数阶Fourier变换在某型涡轴发动机喘振分析中的应用[J]. 航空动力学报, 2009, 24(8): 1720-1725. |
KUANG G L, WANG D B, WU W L, et al. Application of fractional Fourier transform in one turbine-shaft engine surge analyse[J]. Journal of Aerospace Power, 2009, 24(8): 1720-1725 (in Chinese). | |
18 | ZHENG X Q, ZENG H X, WANG B T, et al. Numeri-cal simulation method of surge experiments on gas turbine engines[J]. Chinese Journal of Aeronautics, 2023,36(3):107-120. |
19 | 张鑫, 范明. 基于喘振信号处理仿真系统的航空发动机判喘参数优化设计[J]. 航空发动机, 2022, 48(2): 102-108. |
ZHANG X, FAN M. Optimization design of surge judgment parameters of aeroengine based on surge signal processing simulation system[J]. Aeroengine, 2022, 48(2): 102-108 (in Chinese). | |
20 | 王波, 张兴龙, 张新非, 等. 某航空发动机喘振控制系统设计与验证[J]. 航空动力学报, 2022, 37(5): 1100-1112. |
WANG B, ZHANG X L, ZHANG X F, et al. Surge control system design and validation for an aero-engine[J]. Journal of Aerospace Power, 2022, 37(5): 1100-1112 (in Chinese). | |
21 | 雷杰, 房剑锋, 雷晓波. 基于脉动压力变化率的航空发动机喘振检测方法[J]. 燃气涡轮试验与研究, 2019, 32(2): 1-6. |
LEI J, FANG J F, LEI X B. Aero-engine surge detection method based on fluctuating pressure change rate[J]. Gas Turbine Experiment and Research, 2019, 32(2): 1-6 (in Chinese). | |
22 | 申世才, 雷杰, 郝晓乐. 一种航空发动机压气机喘振检测方法[J]. 空军工程大学学报(自然科学版), 2020, 21(4): 1-6. |
SHEN S C, LEI J, HAO X L. A method for detecting the surge of an aero-engine compressor[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(4): 1-6 (in Chinese). | |
23 | 王玉东. 基于压气机出口静压变化率的喘振检测方法[J]. 航空动力学报, 2020, 35(6): 1131-1139. |
WANG Y D. Surge detection method based on rate of change of compressor discharge static pressure[J]. Journal of Aerospace Power, 2020, 35(6): 1131-1139 (in Chinese). | |
24 | ST??EL M, BINDL S, NIEHUIS R. Rotating stall inception inside the low pressure compressor of a twin-spool turbofan engine[C]∥ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York:ASME,2013. |
25 | OWEN A K, MATTERN D, BRAUN D C, et al. Forced response testing of an axi-centrifugal turboshaft engine[C]∥32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996. |
26 | NELSON E B, PADUANO J D, EPSTEIN A H. Active stabilization of surge in an axicentrifugal turboshaft engine[J]. Journal of Turbomachinery, 2000, 122(3): 485-493. |
27 | 姜涛, 李应红, 李军. 某型发动机压气机最先失速级判定的试验研究[J]. 航空动力学报, 2002, 17(1): 80-82. |
JIANG T, LI Y H, LI J. An experimental research on identification of the first stall stage of a certain engine[J]. Journal of Aerospace Power, 2002, 17(1): 80-82 (in Chinese). | |
28 | 李应红, 李军, 姜涛. 某型发动机喘振综合治理及扩稳试验[J]. 推进技术, 2002, 23(3): 213-215. |
LI Y H, LI J, JIANG T. Integrated treatments on certain engine surge and experimental study on surge margin enlargement[J]. Journal of Propulsion Technology, 2002, 23(3): 213-215 (in Chinese). | |
29 | 申世才, 郝晓乐, 贾一哲. 高空超声速涡扇发动机喘振特征及扩稳措施的飞行试验研究[J]. 燃气涡轮试验与研究, 2016, 29(3): 7-10. |
SHEN S C, HAO X L, JIA Y Z. Flight test of surge characteristic and measures to enlarge the engine surge margin on a high-altitude supersonic turbofan engine[J]. Gas Turbine Experiment and Research, 2016, 29(3): 7-10 (in Chinese). | |
30 | 詹洪飞, 黄帅. 某型涡轴发动机喘振攻关与验证[J]. 海军航空工程学院学报, 2017, 32(3): 295-301. |
ZHAN H F, HUANG S. Research on a certain type of turbine shaft engine surge[J]. Journal of Naval Aeronautical and Astronautical University, 2017, 32(3): 295-301 (in Chinese). | |
31 | 綦蕾, 李志平, 杨东, 等. 航空发动机适航审定喘振与失速影响因素[J]. 航空动力学报, 2020, 35(8): 1724-1734. |
QI L, LI Z P, YANG D, et al. Destabilizing factors on surge and stall characteristic in aero-engine airworthiness certification[J]. Journal of Aerospace Power, 2020, 35(8): 1724-1734 (in Chinese). | |
32 | 郭重佳, 傅文广, 孙鹏, 等. 畸变条件下航空发动机喘振/失速适航符合性方法[J]. 航空动力学报, 2022,37(12):2875-2886. |
GUO C J, FU W G, SUN P, et al. Airworthiness compliance method for aero-engine on surge/stall with distortion conditions[J]. Journal of Aerospace Power, 2022,37(12):2875-2886. | |
33 | 李志平, 王孟琦. 进气畸变下航空发动机失速/喘振适航审定方法[J]. 航空学报, 2015, 36(9): 2947-2957. |
LI Z P, WANG M Q. Airworthiness certification method for aeroengine on stall and surge with inlet distortion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2947-2957 (in Chinese). | |
34 | 李志平, 朱星宇, 张鹏, 等. 侧风影响下航空发动机失速/喘振适航审定方法[J]. 航空动力学报, 2020, 35(7): 1549-1558. |
LI Z P, ZHU X Y, ZHANG P, et al. Aero-engine stall/surge airworthiness certification method under the influence of crosswind[J]. Journal of Aerospace Power, 2020, 35(7): 1549-1558 (in Chinese). | |
35 | 李志平, 陈家辉, 朱星宇, 等. 压力-温度组合畸变下航空发动机失速/喘振适航审定[J/OL]. 航空动力学报, (2022-08-02)[2022-10-27]. . |
LI Z P, CHEN J H, ZHU X Y, et al. Aero-engine stall/surge airworthiness certification study under combined pressure-temperature distortion[J/OL]. Journal of Aerospace Power, (2022-08-02)[2022-10-27]. (in Chinese). |
/
〈 |
|
〉 |