ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Integrated sharp edge aerodynamic-stealth design for hypersonic glide vehicle
Received date: 2022-10-08
Revised date: 2022-11-11
Accepted date: 2022-12-02
Online published: 2022-12-22
Supported by
Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);National Level Project
Stealth performance is one of the key indicators affecting the combat effectiveness of hypersonic weapons. To improve the survivability and penetration capability of hypersonic glide vehicles, the HTV-2 aircraft is used as the initial shape, and the design idea of sharp edges is introduced to propose an aerodynamic shape with good stealth performance. Firstly, CFD numerical simulation and the high-frequency approximation algorithm are used to evaluate the aerodynamic characteristics and stealth characteristics of the initial shape. Then, a sharp-edged aircraft shape is designed by intercepting important cross-sectional contour lines, uniformly selecting control points and reconstructing the three-dimensional shape. On this basis, the lift-drag characteristics and the Radar Cross Section (RCS) of the sharpened configuration are calculated and evaluated. Compared with the original shape, the aerodynamic performance of the sharpened shape changes slightly, with the change in the aerodynamic coefficient within 7%. Meanwhile, in the main threat area, where the pitch angle and the yaw angle vary within ±30° and ±60°, respectively, the average RCS of the aircraft is significantly reduced, with an average drop of more than 20%. In addition, to eliminate the influence of edge diffraction, the edge of the sharpened shape is rounded, further reducing the average RCS value in the main threat area by more than 60%. The effects of rounded corners at different positions and the radius of the corners on the stealth characteristics of the aircraft are further studied. The results show that the rounding of the tail section can considerably improve the stealth characteristics of the aircraft, particularly when the ratio of the radius of the rounded corner to the characteristic length of the aircraft is 1.35%.
Key words: hypersonic glide vehicle; CFD; radar cross section; sharpening; rounding
Yanxu LIU , Shusheng CHEN , Cong FENG , Yiran GU , Zhenghong GAO . Integrated sharp edge aerodynamic-stealth design for hypersonic glide vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(16) : 128093 -128093 . DOI: 10.7527/S1000-6893.2022.28093
1 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012. |
CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese). | |
2 | 余协正, 陈宁, 陈萍萍, 等. 临近空间高超声速飞行器目标特性及突防威胁分析[J]. 航天电子对抗, 2019, 35(6): 24-29. |
YU X Z, CHEN N, CHEN P P, et al. Target characteristics and penetration threats analysis of hypersonic vehicle in the near-space[J]. Aerospace Electronic Warfare, 2019, 35(6): 24-29 (in Chinese). | |
3 | 陈冰雁, 徐国武. 临近空间高升阻比布局高速气动性能对比[J]. 力学季刊, 2014, 35(3): 464-472. |
CHEN B Y, XU G W. Comparison of aerodynamic characteristic of near space high lift-drag ratio configuration[J]. Chinese Quarterly of Mechanics, 2014, 35(3): 464-472 (in Chinese). | |
4 | 焦子涵, 邓帆, 刘辉, 等. 高超声速飞行器气动/隐身优化设计方法[J]. 宇航学报, 2016, 37(9): 1031-1040. |
JIAO Z H, DENG F, LIU H, et al. Aerodynamic and stealthy optimization design method of hypersonic vehicle[J]. Journal of Astronautics, 2016, 37(9): 1031-1040 (in Chinese). | |
5 | DIETLEIN I, KOPP A. System analysis for “sharp-edge” re-entry vehicles: AIAA 2009-7427[R]. Reston: AIAA, 2009. |
6 | B?HRK H, THIELE T, DITTERT C, et al. Thermal testing of the sharp leading edge of SHEFEX-II: AIAA 2012-5919[R]. Reston: AIAA, 2012. |
7 | BARTH T, LONGO J M A. Advanced aerothermodynamic analysis of SHEFEX I[J]. Aerospace Science and Technology, 2010, 14(8): 587-593. |
8 | BARTOLOME CALVO J, EGGERS T. Application of a coupling of aerodynamics and flight dynamics to the SHEFEX I flight experiment[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
9 | LORENZ S, BIERIG A. Robustness analysis related to the control design of the SHEFEX-II hypersonic canard control experiment[C]∥ Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference. Reston: AIAA, 2013. |
10 | 刘国富, 王和平, 聂璐, 等. 锐边高超声速再入飞行器气动隐身综合设计[J]. 上海航天, 2016, 33(2): 100-105. |
LIU G F, WANG H P, NIE L, et al. Stealth-aerodynamic comprehensive design of a sharp-edge hypersonic re-entry vehicle[J]. Aerospace Shanghai, 2016, 33(2): 100-105 (in Chinese). | |
11 | LIU G F, LI D C, XIANG J W, et al. Design, modeling and analysis of a sharp-edge hypersonic stealthy re-entry vehicle[J]. Procedia Engineering, 2015, 99: 163-167. |
12 | 陶烨. 高超声速滑翔飞行器低可探测性外形和弹道设计方法研究[D]. 长沙: 国防科技大学, 2017. |
TAO Y. Low detectable shape and trajectory design of hypersonic glide vehicle[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
13 | 薛普, 杨依峰, 王锁柱, 等. 多平面升力体外形设计与气动/隐身性能研究[J]. 导弹与航天运载技术, 2019(5): 27-32. |
XUE P, YANG Y F, WANG S Z, et al. Configuration design and aerodynamic and stealth characteristics research of multi-planar lift-body vehicle[J]. Missiles and Space Vehicles, 2019(5): 27-32 (in Chinese). | |
14 | 周文硕, 夏露, 王培君, 等. 类C-HGB布局锐边化气动隐身优化设计[J]. 航空学报, 2021, 42(): 123-135. |
ZHOU W S, XIA L, WANG P J, et al. Optimization design of aerodynamic stealth with sharp edges in C-HGB layout[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Sup 1): 123-135 (in Chinese). | |
15 | 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹, 2013(6): 7-13. |
ZHEN H P, JIANG C W. Summary of hypersonic technology verification of aircraft HTV-2[J]. Aerodynamic Missile Journal, 2013(6): 7-13 (in Chinese). | |
16 | CHEN S S, LI J P, LI Z, et al. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes[J]. Journal of Computational Physics, 2022, 456: 111027. |
17 | CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics, 2021, 34(5): 628-641. |
18 | FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452. |
19 | 刘健, 张玉涛, 高伟, 等. 飞行器太赫兹散射特性仿真及抑制方法研究[J]. 制导与引信, 2021, 42(1): 42-48. |
LIU J, ZHANG Y T, GAO W, et al. Investigation on numerical simulation and suppression of the terahertz scattering characteristics of aircraft[J]. Guidance & Fuze, 2021, 42(1): 42-48 (in Chinese). | |
20 | DONG W, DIAO M, GAO L P, et al. A low-complexity DOA and polarization method of polarization-sensitive array[J]. Sensors, 2017, 17(5): 1170. |
21 | 阮颖铮. 雷达截面与隐身技术[M]. 北京: 国防工业出版社, 2000. |
RUAN Y Z. Radar cross section and stealth technology[M]. Beijing: National Defense Industry Press, 2000 (in Chinese). | |
22 | 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013: 48-56. |
SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013: 48-56 (in Chinese). | |
23 | 周印佳, 张志贤, 付新卫, 等. 再入飞行器烧蚀热防护一体化计算方法[J]. 航空学报, 2021, 42(7): 124520. |
ZHOU Y J, ZHANG Z X, FU X W, et al. Integrated computing method for ablative thermal protection system of reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124520 (in Chinese). | |
24 | 李昊歌, 杨华, 杨雨欣, 等. 高超声速升力体迎风面精细化降热优化设计[J]. 航空学报, 2022, 43(): 127-140. |
LI H G, YANG H, YANG Y X, et al. Refinement optimization design for heat reduction on windward surface of hypersonic lifting body[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(Sup 2): 127-140 (in Chinese). | |
25 | 高昌, 李正洲, 黄江涛, 等. 基于连续伴随方法的高超声速飞行器高精度气动优化[J]. 航空学报, 2021, 42(7): 124490. |
GAO C, LI Z Z, HUANG J T, et al. High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124490 (in Chinese). |
/
〈 |
|
〉 |