ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test
Received date: 2022-08-16
Revised date: 2022-09-15
Accepted date: 2022-12-13
Online published: 2022-12-22
Supported by
National Natural Science Foundation of China(11902363)
To adapt to the new launch platform and further improve the range capability, the scheme of folding wing or fin is used for high-speed aircraft. Severe conditions of high temperature and time-varying aerodynamic loads faced by high-speed aircraft make the structural dynamic characteristics of the folding fin more complex, and present serious challenges to accurate analysis of the aero-thermo-elastic properties of the folding fin. In this paper, a mechanical model of the folding mechanism is constructed based on a comprehensive consideration of the factors such as temperature, force load, mechanism clearance, and friction characteristics. The connection stiffness under the influence of different factors is obtained through nonlinear finite element analysis.The experiments at room temperature and high temperature are conducted for verification. The dismensionality of the structure is reduced for simplification based on natural modes. The aerodynamic model is by using the modified third-order piston theory. A quasi-steady model is used to evaluate the flutter characteristics of a specific flight profile. The Abaqus-based structural model and the STAR-CCM+ aerodynamic model are coupled to analyze the time-domain response. The results show that at room temperature and high temperature, the overall relative error of the rotational stiffness of the folding mechanism between the simulated results and the test results is less than 10%, showing a good consistency and verifying the accuracy and usability of the model. The critical flutter velocity calculated by coupling CFD and CSD is lower than that calculated by using the modified third-order piston theory. The method based on CFD and CSD is more conservative. The method proposed in this paper can effectively predict the flutter characteristics of the folding fin, and has important significance for the design of new high-speed aircraft.
Haoyuan REN , Yi WANG , Liang WANG , Jianbo ZHOU , Hanjiang CHANG , Yipeng CAI , Bao LEI , Weiqun ZHANG . Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(14) : 227927 -227927 . DOI: 10.7527/S1000-6893.2022.27927
1 | HEALY F, CHEUNG R C, NEOFET T, et al. Folding wingtips for improved roll performance[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
2 | FRANCESCO D C, ROBERTO S, ROBERTO F, et al. Design optimization of interfacing attachments for the deployable wing of an unmanned re-entry vehicle[J]. Algorithms, 2021, 14(5): 141. |
3 | 宋慧心, 金磊. 折叠翼飞行器的动力学建模与稳定控制[J]. 力学学报, 2020, 52(6): 1548-1559. |
SONG H X, JIN L. Dynamic modeling and stability control of folding wing aircraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559 (in Chinese). | |
4 | DUSSART G X, LONE M M, O'ROURKE C, et al. In-flight folding wingtip system: inspiration from the XB-70 Valkyrie[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
5 | 曹奇凯, 王鄢, 姚念奎, 等. 先进舰载战斗机强度设计技术发展与实践[J]. 航空学报, 2021, 42(8): 525793. |
CAO Q K, WANG Y, YAO N K, et al. Development and application of strength design technology of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525793 (in Chinese). | |
6 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
7 | LI D C, ZHAO S W, RONCH A DA, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62. |
8 | 王强, 马志赛, 张欣, 等. 基于模态综合法的含间隙折叠舵面动态特性分析[J]. 航空学报, 2020, 41(5): 223507. |
WANG Q, MA Z S, ZHANG X, et al. Dynamic characteristic analysis for a folding fin with freeplay nonlinearities based on mode synthesis method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 223507 (in Chinese). | |
9 | XIE C C, CHEN Z Y, AN C. Aeroelastic response of a Z-shaped folding wing during the morphing process[J]. AIAA Journal, 2022, 60(5): 3166-3179. |
10 | LIU B, LIANG H, HAN Z H, et al. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range[J]. Aerospace Science and Technology, 2022, 124: 107557. |
11 | PADMANABHAN M A, DOWELL E H. Computational study of aeroelastic response due to freeplay and flight loads[J]. AIAA Journal, 2021, 59(7): 2793-2799. |
12 | FONZI N, RICCI S, LIVNE E. Numerical and experimental investigations on freeplay-based LCO phenomena on a T-Tail model[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
13 | PANCHAL J, BENAROYA H. Review of control surface freeplay[J]. Progress in Aerospace Sciences, 2021, 127: 100729. |
14 | 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019: 8-14. |
GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: Science Press, 2019: 8-14 (in Chinese). | |
15 | 王翔宇. 非线性结构气动弹性系统的动力学与控制[D]. 北京: 北京航空航天大学, 2021. |
WANG X Y. Dynamic and control for an aeroelastic system with concentrated structural nonlinearities[D]. Beijing: Beihang University, 2021 (in Chinese). | |
16 | AJAJ R, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
17 | LIVNE E. Aircraft active flutter suppression: State of the art and technology maturation needs[J]. Journal of Aircraft, 2017, 55(1): 410-452. |
18 | 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466. |
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese). | |
19 | 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4): 1011-1033. |
YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1011-1033 (in Chinese). | |
20 | HU W, YANG Z C, GU Y S. Aeroelastic study for folding wing during the morphing process[J]. Journal of Sound and Vibration, 2016, 365: 216-229. |
21 | HU W, YANG Z C, GU Y S, et al. The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness[J]. Journal of Sound and Vibration, 2017, 400: 22-39. |
22 | CHEUNG R C, WALES C, REZGUI D, et al. Modelling of folding wing-tip devices for gust loads alleviation[C]∥ 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
23 | CHEUNG R C, REZGUI D, COOPER J E, et al. Testing of folding wing-tip for gust load alleviation in high aspect ratio wing[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
24 | CONTI C, SALTARI F, MASTRODDI F, et al. Quasi-steady aeroelastic analysis of the semi-aeroelastic hinge including geometric nonlinearities[J]. Journal of Aircraft, 2021, 58(5): 1168-1178. |
25 | HE H N, TANG H, YU K P, et al. Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment[J]. Chinese Journal of Aeronautics, 2020, 33(9): 2357-2371. |
26 | LAMORTE N, FRIEDMANN P P, GLAZ B, et al. Uncertainty propagation in hypersonic aerothermoelastic analysis[J]. Journal of Aircraft, 2014, 51(1): 192-203. |
27 | 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 527350. |
YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527350 (in Chinese). | |
28 | LIU Z H, LI Z H, MA Q, et al. Thermo-mechanical coupling behavior of plate structure under re-entry aerodynamic environment[J]. International Journal of Mechanical Sciences, 2022, 218: 107066. |
29 | WU J, XU Q Y, ZHANG Z, et al. Aeroelastic characteristics of inflatable reentry vehicle in transonic and supersonic regions[J]. Computers & Fluids, 2022, 237: 105338. |
30 | HUANG C D, HUANG J C, SONG X P, et al. Three dimensional aeroelastic analyses considering free-play nonlinearity using computational fluid dynamics/computational structural dynamics coupling[J]. Journal of Sound and Vibration, 2021, 494: 115896. |
31 | 马砾, 招启军, 赵蒙蒙, 等. 基于CFD/CSD耦合方法的旋翼气动弹性载荷计算分析[J]. 航空学报, 2017, 38(6): 120762. |
MA L, ZHAO Q J, ZHAO M M, et al. Computation analyses of aeroelastic loads of rotor based on CFD/CSD coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120762 (in Chinese). | |
32 | CHEN F, LIU H, ZHANG S T. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating[J]. Aerospace Science and Technology, 2018, 78: 620-636. |
33 | 沈恩楠, 郭同庆, 吴江鹏, 等. 高超声速全动翼面全时域耦合分析方法及应用[J]. 航空学报, 2021, 42(8): 525773. |
SHEN E N, GUO T Q, WU J P, et al. Full-time coupling method and application of a hypersonic all-movable wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525773 (in Chinese). | |
34 | 刘桐林. 世界导弹大全[M]. 北京: 军事科学出版社, 1998: 137-138. |
LIU T L. World missile encyclopedia[M]. Beijing: Military Science Press, 1998: 137-138 (in Chinese). | |
35 | 余旭东, 徐超, 郑晓亚. 飞行器结构设计[M]. 西安: 西北工业大学出版社, 2010: 178-185. |
YU X D, XU C, ZHENG X Y. Structural design for aircraft [M]. Xi'an: Northwestern Polytechnical University Press, 2010: 178-185 (in Chinese). | |
36 | 陈克, 金玲, 雷豹, 等. 基于高温合金的高速飞行器折叠舵结构设计与研究[J/OL]. 航空兵器, (2022-04-07)[2022-08-15]. . |
CHEN K, JIN L, LEI B, et al. Design and research of high-speed aircraft folding rudder structure based on high temperature alloy [J/OL]. Aero Weaponry, (2022-04-07)[2022-08-15]. (in Chinese). | |
37 | WRIGGERS P. Computational contact mechanics[M]. 2nd ed. Berlin: Springer, 2006: 109-153. |
38 | 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 666-685. |
WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 666-685 (in Chinese). | |
39 | 任浩源, 王毅, 王亮, 等. 航天飞行器折叠翼锁紧机构力学模型[J/OL].航空动力学报, (2022-07-12)[2022-08-15]. . |
REN H Y, WANG Y, WANG L, et al. Mechanical model of locking mechanisms of folding wing for spacecraft [J/OL]. Journal of Aerospace Power, (2022-07-12)[2022-08-15]. (in Chinese). | |
40 | 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004: 134-136. |
CHEN G B, ZOU C Q, YANG C. Design of aeroelasticity[M]. Beijing: Beihang University Press, 2004: 134-136 (in Chinese). | |
41 | 王乐, 王毅, 南宫自军. 活塞理论及其改进方法在超声速翼面颤振分析中的应用[J]. 导弹与航天运载技术, 2011(4): 13-17. |
WANG L, WANG Y, NANGONG Z J. Application of piston theory and its improved methods to the analysis of supersonic wing flutter[J]. Missiles and Space Vehicles, 2011(4): 13-17 (in Chinese). | |
42 | 王乐, 朱辰, 周剑波. 空气舵系统连接刚度识别及颤振模态跟踪方法[J]. 战术导弹技术, 2017(2): 52-57. |
WANG L, ZHU C, ZHOU J B. Method of joint stiffness identification and flutter mode tracking of air rudder system[J]. Tactical Missile Technology, 2017(2): 52-57 (in Chinese). | |
43 | CINOSI N, WALKER S P, BLUCK M J, et al. CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+[J]. Nuclear Engineering and Design, 2014, 279: 37-49. |
44 | FRIEDMANN P P, MCNAMARA J J, THURUTHIMATTAM B J, et al. Aeroelastic analysis of hypersonic vehicles[J]. Journal of Fluids and Structures, 2004, 19(5): 681-712. |
45 | THURUTHIMATTAM B, FRIEDMANN P, POWELL K, et al. Aeroelasticity of a generic hypersonic vehicle[C]∥ 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002. |
46 | SPAIN C, ZEILER T, BULLOCK E, et al. A flutter investigation of all-moveable NASP-like wings at hypersonic speeds[C]∥ 34th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1993. |
47 | MCNAMARA J J, FRIEDMANN P P, POWELL K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow[J]. AIAA Journal, 2008, 46(10): 2591-2610. |
/
〈 |
|
〉 |