Electronics and Electrical Engineering and Control

Spacecraft autonomous fly-around multi-mode control based on hybrid state machine

  • Min LI ,
  • Li YUAN ,
  • Chunling WEI
Expand
  • 1.Beijing Institute of Control Engineering,Beijing  100190,China
    2.Science and Technology on Space Intelligent Control Laboratory,Beijing  100190,China
    3.China Academy of Space Technology,Beijing  100190,China

Received date: 2022-11-21

  Revised date: 2022-11-28

  Accepted date: 2022-12-07

  Online published: 2022-12-14

Supported by

National Natural Science Foundation of China(U21B6001)

Abstract

This paper investigates the autonomous control problem for non-cooperative targets, and proposes a multi-mode control approach based on the hybrid state machine. First, according to the task objective of fly-around and orbit safety analysis, we define six states including long-range guidance, close-range guidance, relative-position keeping, fly-around transfer, collision threat avoidance, and evacuation. Moreover, the control objective of each state is designed. Second, to achieve the coordinated transitions and control between the states, a state monitoring and management approach is developed and state transition functions designed based on the finite state machine. A novel multi-mode motion plan and adaptive finite-time control strategies are then proposed to guarantee the tracking performance according to the task objective. Finally, the proposed autonomous fly-around control approach is simulated by digital simulation software, and the simulation results show the effectiveness of the proposed approach.

Cite this article

Min LI , Li YUAN , Chunling WEI . Spacecraft autonomous fly-around multi-mode control based on hybrid state machine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(18) : 328296 -328296 . DOI: 10.7527/S1000-6893.2022.28296

References

1 黄艺, 贾英民. 非合作目标绕飞任务的航天器鲁棒姿轨耦合控制[J]. 控制理论与应用201835(10): 1405-1414.
  HUANG Y, JIA Y M. Robust relative position and attitude control for non-cooperative fly-around mission[J]. Control Theory & Applications201835(10): 1405-1414 (in Chinese).
2 周文勇, 袁建平, 罗建军. 对异面椭圆轨道目标航天器的长期绕飞轨迹设计与控制[J]. 中国空间科学技术200626(4): 20-25, 31.
  ZHOU W Y, YUAN J P, LUO J J. Design and control of long-term flyaround trajectory for target spacecraft in non-coplanar elliptical orbit[J]. Chinese Space Science and Technology200626(4): 20-25, 31 (in Chinese).
3 谭天乐. 椭圆轨道交会、悬停与绕飞的全状态反馈控制[J]. 宇航学报201637(7): 811-818.
  TAN T L. Full state feedback control of rendezvous, hovering and fly-around in elliptical orbit[J]. Journal of Astronautics201637(7): 811-818 (in Chinese).
4 刘将辉, 李海阳, 杨路易, 等. 强迫绕飞无控旋转目标的控制策略[J]. 系统工程与电子技术201941(10): 2310-2319.
  LIU J H, LI H Y, YANG L Y, et al. Control strategy of forced flying-around uncontrolled rotating targets[J]. Systems Engineering and Electronics201941(10): 2310-2319 (in Chinese).
5 常燕, 陈韵, 鲜勇, 等. 椭圆轨道上目标监测绕飞轨道构型设计与构型保持[J]. 系统工程与电子技术201739(6): 1317-1324.
  CHANG Y, CHEN Y, XIAN Y, et al. Configuration design and maintenance of flyaround trajectory for target monitoring in elliptical orbit[J]. Systems Engineering and Electronics201739(6): 1317-1324 (in Chinese).
6 师鹏, 李保军, 赵育善. 有限推力下的航天器绕飞轨道保持与控制[J]. 北京航空航天大学学报200733(7): 757-760.
  SHI P, LI B J, ZHAO Y S. Orbital maintenance and control of spacecraft fly-around with finite-thrust[J]. Journal of Beijing University of Aeronautics and Astronautics200733(7): 757-760 (in Chinese).
7 路阳, 付艳明, 张卯瑞. 线性连续周期系统的模型参考跟踪控制[J]. 控制与决策201631(7): 1279-1284.
  LU Y, FU Y M, ZHANG M R. Model reference tracking control of linear continuous periodic system[J]. Control and Decision201631(7): 1279-1284 (in Chinese).
8 张庆展, 曾占魁, 靳永强, 等. 空间快速绕飞与视线指向的建模与控制[J]. 宇航学报201435(3): 324-330.
  ZHANG Q Z, ZENG Z K, JIN Y Q, et al. Modeling and control on fast fly-around and line of sight pointing[J]. Journal of Astronautics201435(3): 324-330 (in Chinese).
9 HUANG Y, JIA Y M. Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target[J]. International Journal of Robust and Nonlinear Control201828(6): 2598-2618.
10 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报201738(1): 320202.
  YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica201738(1): 320202 (in Chinese).
11 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用201945(4): 7-18.
  YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application201945(4): 7-18 (in Chinese).
12 袁利. 面向不确定环境的航天器智能自主控制技术[J]. 宇航学报202142(7): 839-849.
  YUAN L. Spacecraft intelligent autonomous control technology toward uncertain environment[J]. Journal of Astronautics202142(7): 839-849 (in Chinese).
13 阮立刚, 王莉, 叶家瑜, 等. 基于混合信号状态机的交流固态功率控制器功能模型[J]. 航空学报201738(11): 321133.
  RUAN L G, WANG L, YE J Y, et al. Functional modeling of AC solid state power controller based on mixed signal state machine[J]. Acta Aeronautica et Astronautica Sinica201738(11): 321133 (in Chinese).
14 杨胜, 王鑫哲, 李蒙. 基于有限状态机的交会对接飞行任务规划方法[J]. 北京航空航天大学学报201945(9): 1741-1746.
  YANG S, WANG X Z, LI M. RVD flight mission planning and scheduling method based on finite state machine[J]. Journal of Beijing University of Aeronautics and Astronautics201945(9): 1741-1746 (in Chinese).
15 JAGAT A, SINCLAIR A J. Nonlinear control for spacecraft pursuit-evasion game using the state-dependent Riccati equation method[J]. IEEE Transactions on Aerospace and Electronic Systems201753(6): 3032-3042.
16 王峰, 陈雪芹, 曹喜滨. 基于PEA的椭圆轨道航天器编队飞行高精度位置保持[J]. 宇航学报201031(9): 2114-2121.
  WANG F, CHEN X Q, CAO X B. High accuracy relative position keeping based on PEA approach for spacecraft formation flight around eccentric orbits[J]. Journal of Astronautics201031(9): 2114-2121 (in Chinese).
17 胡军, 李毛毛. 航天器进入制导方法综述[J]. 航空学报202142(11): 525048.
  HU J, LI M M. Review of spacecraft entry guidance method[J]. Aeronautica et Astronautica Sinica202142(11): 525048 (in Chinese).
18 郭洪振, 陈谋. 基于预设性能的四旋翼无人机编队安全控制[J]. 航空学报202142(8): 525789.
  GUO H Z, CHEN M. Safety formation control of quadrotor UAVs based on prescribed performance[J]. Aeronautica et Astronautica Sinica202142(8): 525789 (in Chinese).
19 HUANG Z C, CHU D F, WU C Z, et al. Path planning and cooperative control for automated vehicle platoon using hybrid automata[J]. IEEE Transactions on Intelligent Transportation Systems201920(3): 959-974.
20 NING X L, GUI M Z, FANG J C, et al. A novel differential Doppler measurement-aided autonomous celestial navigation method for spacecraft during approach phase[J]. IEEE Transactions on Aerospace and Electronic Systems201753(2): 587-597.
Outlines

/