Solid Mechanics and Vehicle Conceptual Design

Optimum design method for static test of aircraft wing segment

  • Bin WANG ,
  • Jianjun ZHENG ,
  • Wei LIU ,
  • Mengmeng WANG
Expand
  • 1.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China
    2.State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China
E-mail: ylzjj_86@163.com

Received date: 2022-09-28

  Revised date: 2022-10-26

  Accepted date: 2022-12-14

  Online published: 2022-12-14

Abstract

Aircraft component static test is an important means to verify structure carrying capacity and finite element models. The component test has a fairly small scale compared with full scale static tests. However, the separation surface stiffness mapping, support simulation and load simulation problems need to be solved to ensure that the accuracy of structural assessment is not affected. The static test on the middle wing section of an aircraft with a combined wing layout is conducted, which requires the solution to the multi-separation surface optimum design, aerodynamic load and inertial load optimum design and application. We adopt the design idea of hierarchical decoupling, stripping each influence factor of the test design step by step and establishing corresponding models for comparison analysis. Optimum design is carried out according to the structure responding error to evaluate errors from each simplified simulation. Based on the structural finite element numerical simulation analysis, we propose test techniques such as the multi-hinged joint displacement and active load hybrid simulation, stiffness decoupling optimum design of the separation surface loading replacement part, load optimum design and application of truss wings to achieve a higher precision level of the component test design.

Cite this article

Bin WANG , Jianjun ZHENG , Wei LIU , Mengmeng WANG . Optimum design method for static test of aircraft wing segment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(18) : 228065 -228065 . DOI: 10.7527/S1000-6893.2022.28065

References

1 孙侠生, 齐丕骞. 民用飞机结构强度刚度设计与验证指南[M]. 北京: 航空工业出版社, 2012.
  SUN X SH, QI P Q. Design and verification guide of strength and stiffness in civil aircraft structure[M]. Beijing: Aviation Industry Press, 2012 (in Chinese).
2 郑建军,唐吉运,王彬文. C919飞机全机静力试验技术[J]. 航空学报201940(1):522364.
  ZHENG J J, TANG J Y, WANG B W. Static test technology for C919 full-scale aircraft structure[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522364 (in Chinese).
3 王育鹏,裴连杰,李秋龙,等. 新一代战斗机全机地面强度试验技术[J]. 航空学报202041(6): 523482.
  WANG Y P, PEI L J, LI Q L, et al. Full-scale aircraft ground strength test technology of next generation fighter[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523482 (in Chinese).
4 强宝平. 全尺寸飞机结构试验技术[J]. 航空科学技术201223(6): 10-13.
  QIANG B. Evaluation of full scale aircraft structure strength test technology[J]. Aeronautical Science & Technology201223(6): 10-13 (in Chinese).
5 赵峻峰, 李三平, 李强. 民用飞机机体结构静强度验证[J]. 民用飞机设计与研究2020(2): 1-5.
  ZHAO J F, LI S P, LI Q. Static strength verification of civil aircraft body structure[J]. Civil Aircraft Design & Research2020(2): 1-5 (in Chinese).
6 樊则文, 陈挺, 张绪. 民用飞机复合材料后机身结构适航验证方法[J]. 高科技纤维与应用201843(2): 36-40.
  FAN Z W, CHEN T, ZHANG X. The means of airworthiness certification for the composite rear-fuselage structure of civil aircraft[J]. Hi-Tech Fiber & Application201843(2): 36-40 (in Chinese).
7 赵善斋. 结构静力试验边界条件的试验研究[J]. 强度与环境199118(2): 35-39, 53.
  ZHAO S. Experimental research of boundary conditions for static structure test[J]. Structure & Environment Engineering199118(2): 35-39, 53 (in Chinese).
8 刘佳.民用飞机后机身结构静力试验方案设计[J].民用飞机设计与研究2013(S2): 10-12.
  LIU J. A static test method for the after fuselage structure of civil aircraft[J]. Civil Aircraft Design & Research2013(S2): 10-12 (in Chinese).
9 王彬文, 陈向明, 邓凡臣, 等. 飞机壁板复杂载荷试验技术[J]. 航空学报202243(3): 72-89.
  WANG B W, CHEN X M, DENG F C, et al. Complex load test technology for aircraft panels: review[J]. Acta Aeronautica et Astronautica Sinica202243(3): 72-89 (in Chinese).
10 李崇, 柴亚南, 王彬文, 等. 大型机身壁板复杂应力场试验技术[J]. 航空学报202243(6): 526409.
  LI C, CHAI Y N, WANG B W, et al. Test technology for complex stress field of large scale fuselage panel[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526409 (in Chinese).
11 曾聪, 许国山, 张树伟, 等. 力-位移混合控制方法在大型多功能试验加载系统拟静力试验中的应用[J]. 振动与冲击201635(7): 161-166.
  ZENG C, XU G S, ZHANG S W, et al. Application of force-displacement hybrid control method in quasi-static tests of a multi-functional testing system[J]. Journal of Vibration and Shock201635(7): 161-166 (in Chinese).
12 臧伟锋, 董登科, 张海英. 机身壁板内压载荷强度试验方法研究[J]. 机械强度201537(5): 972-977.
  ZANG W F, DONG D K, ZHANG H Y. Research on test method of fuselage panel subjected to internal pressure load[J]. Journal of Mechanical Strength201537(5): 972-977 (in Chinese).
13 JEBáCEK I. Fuselage test of a small aircraft according to CS‐23 requirements[J]. Aviation200913(1): 26-33.
14 SCHERBAN K S, ZAKHARENKOVA A Y, KONOVALOV V V, et al. Full-scale fatigue and residual strength tests of the composite wing box of a passenger aircraft[C]∥ICAF 2019–Structural Integrity in the Age of Additive Manufacturing. Cham:Springer, 2019:771-787.
15 SHCHERBAN K S, SURNACHEV A A, LIMONIN M V, et al. Combined static and fatigue tests of the full-scale structure of a transport aircraft[C]∥ICAF 2019–Structural Integrity in the Age of Additive Manufacturing. Cham:Springer, 2019:736-746.
16 OSTERGAARD M G, IBBOTSON A R, LE ROUX O, et al. Virtual testing of aircraft structures[J]. CEAS Aeronautical Journal20111(1): 83-103.
17 薛彩军, 谭伟, 聂宏. 民用飞机发动机吊挂静力试验技术研究[J]. 实验力学2011, 26(6)735-742.
  XUE C J, TAN W, NIE H. Investigation on the testing technology of pylon static test for civil aircraft engine[J]. Journal of Experimental Mechanics2011, 26(6)735-742 (in Chinese).
18 李卫平, 谭伟, 薛彩军, 等. 民用飞机发动机吊挂部段静力试验与静强度分析[J]. 南京航空航天大学学报201143(6): 732-737.
  LI W P, TAN W, XUE C J, et al. Static test and computational analysis for pylon of airliner engine[J]. Journal of Nanjing University of Aeronautics & Astronautics201143(6): 732-737 (in Chinese).
19 何志全,刘杨,李泽江. 大型民用飞机缝翼全尺寸静力试验载荷设计[J]. 航空学报201940(2): 522197.
  HE Z Q, LIU Y, LI Z J.Load design for full scale static test of slat on large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(2): 522197 (in Chinese).
20 庞宝才, 董登科, 弓云昭, 等. 襟缝翼可动翼面的随动加载方法研究[J]. 机械科学与技术201433(10): 1590-1593.
  PANG B C, DONG D K, GONG Y Z, et al. Study on tracking loading method of locomotory wing for flap and slat[J]. Mechanical Science and Technology for Aerospace Engineering201433(10): 1590-1593 (in Chinese).
21 杜峰. 某飞机襟缝翼疲劳试验系统随动加载技术研究[J]. 工程与试验201757(4): 68-73.
  DU F. Study on tracking-loading technology for fatigue test system of flap and slat of aircraft[J]. Engineering & Test201757(4): 68-73 (in Chinese).
22 张柁, 宋鹏飞, 尹伟, 等. 空间复杂运动增升结构随动加载技术[J]. 航空学报202243(6): 526044.
  ZHANG T, SONG P F, YIN W, et al. Follow-up loading technology for lift structure with spatial complex movement[J]. Acta Aeronautica et Astronautica Sinica202243(6):526044 (in Chinese).
23 王海军, 王高利. 某型飞机复合材料平尾静强度试验方法[J]. 工程与试验201959(3): 41-43.
  WANG H J, WANG G L. Static strength test method for the aircraft composite material tail[J]. Engineering & Test201959(3): 41-43 (in Chinese).
24 刘兴科. 运输类飞机翼身组合体静强度试验研究[J]. 工程与试验201858(1): 77-81.
  LIU X K. Experimental study on static strength of transport wing-body[J]. Engineering & Test201858(1): 77-81 (in Chinese).
25 郭琼, 刘玮, 裴连杰, 等. 全尺寸复合材料机身筒段静力/疲劳试验技术[J]. 航空学报202243(6): 525816.
  GUO Q, LIU W, PEI L J, et al. Static and fatigue test technology for full-scale composite fuselage barrels[J]. Acta Aeronautica et Astronautica Sinica202243(6): 525816 (in Chinese).
26 孟繁沛, 王建邦, 李令芳, 等. 飞机结构疲劳试验载荷的优化设计[J]. 航空学报200122(6): 553-555.
  MENG F P, WANG J B, LI L F, et al. Optimum design of fatigue testing loads for airplane structures[J]. Acta Aeronautica et Astronautica Sinica200122(6): 553-555 (in Chinese).
27 刘春艳, 唐吉运, 强宝平, 等. 全机结构疲劳试验载荷优化技术模拟研究[J]. 科学技术与工程201919(7): 284-288.
  LIU C Y, TANG J Y, QIANG B P, et al. Simulation study on full-scale aircraft structure fatigue test load optimization technology[J]. Science Technology and Engineering201919(7): 284-288 (in Chinese).
Outlines

/