Fluid Mechanics and Flight Mechanics

Numerical simulation of aero-heating in slip flow regime with chemical non-equilibrium

  • Chongxiao LIU ,
  • Jiangfeng WANG
Expand
  • College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
E-mail: wangjf@nuaa.edu.cn

Received date: 2022-09-07

  Revised date: 2022-09-27

  Accepted date: 2022-11-29

  Online published: 2022-12-14

Supported by

Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract

Numerical simulation predicting the aero-heating of chemical non-equilibrium flow in the slip flow regime has been carried out for the Orbital Reentry Experiment (OREX) vehicle by solving multicomponent chemical non-equilibrium Navier-Stokes(N-S) equations. A detailed comparison is made between the finite rate catalytic and non-catalytic, slip and no-slip wall conditions, and the influence of surface catalysis and slip effects on aero-heating is studied. The main mechanism affecting aero-heating is also analyzed. The results show that surface catalysis and slip effects influence the distribution of flow properties, with a strong impact on the shock stand-off distance at 92.82 km. With the decrease in altitude, the gap of heat flux increases between the finite rate catalytic and non-catalytic wall conditions, while decreases between the slip and no-slip wall conditions. At an altitude lower than 92.82 km, the stagnation point heat flux of the finite rate catalytic wall agrees well with the flight data, with the deviation within 11%. In the area near the wall, the catalytic effect has a considerable influence on species distribution, while the temperature jump condition of slip effects exerts a significant impact on the temperature distribution.

Cite this article

Chongxiao LIU , Jiangfeng WANG . Numerical simulation of aero-heating in slip flow regime with chemical non-equilibrium[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(16) : 127980 -127980 . DOI: 10.7527/S1000-6893.2022.27980

References

1 BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994:219-255.
2 GRAD H. Asymptotic theory of the Boltzmann equation[J]. Physics of Fluids19636(2): 147-181.
3 BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review195494(3): 511-525.
4 GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics19492(4): 331-407.
5 江中正, 赵文文, 袁震宇, 等. 基于非线性耦合本构关系的改进边界条件[J]. 航空学报201839(10): 122057.
  JIANG Z Z, ZHAO W W, YUAN Z Y, et al. An enhanced wall-boundary condition based on nonlinear coupled constitutive relations[J]. Acta Aeronautica et Astronautica Sinica201839(10): 122057 (in Chinese).
6 LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics2004193(2): 708-738.
7 LI Z H, ZHANG H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry[J]. Journal of Computational Physics2009228(4): 1116-1138.
8 LOFTHOUSE A J, SCALABRIN L C, BOYD I D. Velocity slip and temperature jump in hypersonic aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer200822(1): 38-49.
9 BHIDE P M, NOMPELIS I, SCHWARTZENTRUBER T, et al. Velocity-slip and temperature-jump effects in near-continuum hypersonic flows[J]. AIAA Journal202159(10): 3815-3830.
10 黄飞, 张亮, 程晓丽, 等. 连续流失效对近空间飞行器气动特性的影响[J]. 空气动力学学报201331(5):623-628, 640.
  HUANG F, ZHANG L, CHENG X L, et al. Effects of continuum breakdown on aerodynamics of near space vehicle[J]. Acta Aerodynamica Sinica201331(5):623-628, 640 (in Chinese).
11 王国林, 周印佳, 金华, 等. 催化效应对气动热环境影响的流动-传热耦合数值分析[J]. 实验流体力学201933(3): 13-19.
  WANG G L, ZHOU Y J, JIN H, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics201933(3): 13-19 (in Chinese).
12 MACCORMACK R. Nonequilibrium effects for hypersonic transitional flows using continuum approach[C]∥ 27th Aerospace Sciences Meeting. Reston: AIAA, 1989.
13 KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory[C]∥ 34th Thermophysics Conference. Reston: AIAA, 2000.
14 GUPTA R N. Reevaluation of flight-derived surface recombination-rate expressions for oxygen and nitrogen[J]. Journal of Spacecraft and Rockets199633(3): 451-453.
15 STEWART D A. Surface catalysis and characterization of proposed candidate TPS for access-to-space vehicles[R]. Washington : NASA Ames Research Center, 1997.
16 GOKCEN T. Effects of flowfield nonequilibrium on convective heat transfer to a blunt body[C]∥ 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996.
17 MACCORMACK R, CHAPMAN D. Computational fluid dynamics near the continuum limit[C]∥ 8th Computational Fluid Dynamics Conference. Reston: AIAA, 1987.
18 BISCEGLIA S, RANUZZI G. Real gas effects on a planetary re-entry capsule[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
19 GUPTA R N, MOSS J N, PRICE J M. Assessment of thermochemical nonequilibrium and slip effects for orbital re-entry experiment[J]. Journal of Thermophysics and Heat Transfer199711(4): 562-569.
20 GUPTA R N. Viscous shock-layer study of thermochemical nonequilibrium[J]. Journal of Thermophysics and Heat Transfer199610(2): 257-266.
21 苗文博, 程晓丽, 艾邦成, 等. 高超声速流动壁面催化复合气动加热特性[J]. 宇航学报201334(3): 442-446.
  MIAO W B, CHENG X L, AI B C, et al. Surface catalysis recombination aero-heating characteristics of hypersonic flow[J]. Journal of Astronautics201334(3): 442-446 (in Chinese).
22 苗文博, 程晓丽, 艾邦成. 来流条件对热流组分扩散项影响效应分析[J]. 空气动力学学报201129(4):476-480.
  MIAO W B, CHENG X L, AI B C. Flow configuration effects on mass diffusion part ofheat-flux in thermal-chemical flows[J]. Acta Aerodynamica Sinica201129(4):476-480 (in Chinese).
23 粟斯尧, 石义雷, 柳森, 等. 有限催化对返回舱气动热环境影响[J]. 空气动力学学报201836(5):878-884.
  SU S Y, SHI Y L, LIU S, et al. Finite-rate surface catalysis effects on aero-heating environment of a reentry capsule[J]. Acta Aerodynamica Sinica201836(5):878-884 (in Chinese).
24 丁明松, 董维中, 高铁锁, 等. 局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报201839(3): 44-54.
  DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica201839(3): 44-54 (in Chinese).
25 LIOU M S. Progress towards an improved CFD method— AUSM+ [C]∥ 12th Computational Fluid Dynamics Conference. Reston: AIAA, 1995.
26 潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙: 国防科学技术大学,2010 : 89-91.
  PAN S. Numerical simulation of hypersonic aerodynamics and large-scale parallel computation[D]. Changsha: National University of Defense Technology, 2010: 89-91 (in Chinese).
27 BLOTTNER F G. Viscous shock layer at the stagnation point with nonequilibrium air chemistry[J]. AIAA Journal19697(12): 2281-2288.
28 GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[R]. Washington, D.C. : NASA Langley Research Center, 1989.
29 MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London1879170: 231-256.
30 LOCKERBY D A, REESE J M, GALLIS M A. Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows[J]. AIAA Journal200543(6): 1391-1393.
31 曹文斌, 李桦, 高洪贺. 滑移边界条件的收敛性分析及应用[J]. 国防科技大学学报201335(1): 12-18.
  CAO W B, LI H, GAO H H. Convergence analysis and application of the slip boundary conditions[J]. Journal of National University of Defense Technology201335(1): 12-18 (in Chinese).
32 MOSS J, SIMMONDS A. Nonequilibrium effects for hypersonic transitional flows[C]∥ 25th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1987.
33 YAMAMOTO Y, YOSHIOKA M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[C]∥ 30th Thermophysics Conference. Reston: AIAA, 1995.
Outlines

/