Material Engineering and Mechanical Manufacturing

Pose and shape adjustment method for CFRP fuselage panel based on multi-robot collaboration

  • Yingke YANG ,
  • Dongsheng LI ,
  • Liheng SHEN ,
  • Rupeng LI ,
  • Yunong ZHAI
Expand
  • 1.School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China
    2.COMAC Shanghai Aircraft Manufacturing Co. ,Ltd. ,Shanghai 201324,China
    3.Ningbo Institute of Technology,Beihang University,Ningbo 315800,China
E-mail: zhaiyn@buaa.edu.cn

Received date: 2022-09-14

  Revised date: 2022-10-09

  Accepted date: 2022-11-07

  Online published: 2022-12-06

Supported by

National Natural Science Foundation of China(52105502);Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing(COMAC-SFGS-2019-263);Fundamental Research Funds for the Central Universities(3042021601)

Abstract

Aiming at the assembly process characteristics of Carbon Fiber Reinforced Plastic (CFRP) fuselage panels, such as large size, large curvature, and difficulty to reduce the shape deviation, a pose and shape adjustment method for CFRP fuselage panel based on multi-robot collaboration is proposed. The pre-positioning of the clamping units on each robot is realized, and the global kinematic model of the multi-robot flexible assembly system is established. Through multi-robot collaborative motion, the pose adjustment of the composite panel is achieved, with the error analysis of the collaborative motion. The relationship between the deviation of shape-control point and the robot motion is established, the shape of the composite fuselage panel is then adjusted through the robot movement. Finally, the proposed method is verified by application experiments. The results show that the pose adjustment method can achieve a positioning accuracy of better than 0.08 mm, and the shape accuracy of the composite fuselage panel can reach 0.6 mm, which demonstrates the feasibility and effectiveness of the method.

Cite this article

Yingke YANG , Dongsheng LI , Liheng SHEN , Rupeng LI , Yunong ZHAI . Pose and shape adjustment method for CFRP fuselage panel based on multi-robot collaboration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(14) : 428006 -428006 . DOI: 10.7527/S1000-6893.2022.28006

References

1 薛红前. 飞机装配工艺学[M]. 西安: 西北工业大学出版社, 2015: 27-28.
  XUE H Q. Aircraft assembly technology[M]. Xi’an: Northwestern Polytechnical University Press, 2015: 27-28 (in Chinese).
2 YUE X W, WEN Y C, HUNT J H, et al. Surrogate model-based control considering uncertainties for composite fuselage assembly[J]. Journal of Manufacturing Science and Engineering2018140(4): 041017.
3 Airbus. Advanced lightweight materials [EB/OL]. (2022-10-18) [2022-10-20]. : .
4 李东升, 翟雨农, 李小强. 飞机复合材料结构少无应力装配方法研究与应用进展[J]. 航空制造技术201760(9): 30-34.
  LI D S, ZHAI Y N, LI X Q. Research and application advances of stress-less assembly methods for composite airframe[J]. Aeronautical Manufacturing Technology201760(9): 30-34 (in Chinese).
5 潘国威, 陈文亮, 王珉. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报201940(1): 522572.
  PAN G W, CHEN W L, WANG M. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522572 (in Chinese).
6 郭恩明. 国外飞机柔性装配技术[J]. 航空制造技术200548(9): 28-32.
  GUO E M. Foreign aircraft flexible assembly technology[J]. Aeronautical Manufacturing Technology200548(9): 28-32 (in Chinese).
7 Advanced Integration Technology. Positioning System [EB/OL]. (2015-7-28) [2022-7-8]. : .
8 ARISTA R, FALGARONE H. Flexible best fit assembly of large aircraft components. airbus A350 XWB case study [M]∥Product Lifecycle Management and the Industry of the Future. Cham: Springer International Publishing, 2017: 152-161.
9 Dr SCHNEIDER T. Innovative approach for modular and flexible positioning systems for large aircraft assembly[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, 2015: 2015-01-2503.
10 HUANG J, YU L, ZHANG Y L, et al. A new positioning device designed for aircraft automated alignment system[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, 2019: 2019-01-1883.
11 MBAREK T, MEISSNER A, BIYIKLIOGLU N. Positioning system for the aircraft structural assembly[J]. SAE International Journal of Aerospace20114(2): 1038-1047.
12 BI Y B, YAN W M, KE Y L. Numerical study on predicting and correcting assembly deformation of a large fuselage panel during digital assembly[J]. Assembly Automation201434(2): 204-216.
13 CHEN Z H, DU F Z, TANG X Q. Position and orientation best-fitting based on deterministic theory during large scale assembly[J]. Journal of Intelligent Manufacturing201829(4): 827-837.
14 DENG Z P, HUANG X, LI S G, et al. On-line calibration and uncertainties evaluation of spherical joint positions on large aircraft component for zero-clearance posture alignment[J]. Robotics and Computer-Integrated Manufacturing201956: 38-54.
15 MEI B, YANG Y T, ZHU W D. Enhanced pose adjustment system for wing-box assembly in large aircraft manufacturing[J]. Journal of Computing and Information Science in Engineering202222(2): 021011.
16 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报201132(5): 908-919.
  QIU B G, JIANG J X, BI Y Bet al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica201132(5): 908-919 (in Chinese).
17 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报200930(7): 1319-1324.
  GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica200930(7): 1319-1324 (in Chinese).
18 黄翔, 李泷杲, 陈磊, 等. 民用飞机大部件数字化对接关键技术[J]. 航空制造技术201053(3): 54-56.
  HUANG X, LI S G, CHEN L, et al. Key technologies of digital final assembly for civil aircraft[J]. Aeronautical Manufacturing Technology201053(3): 54-56 (in Chinese).
19 陈文亮, 潘国威, 王珉. 基于力位协同控制的大飞机机身壁板装配调姿方法[J]. 航空学报201940(2): 522403.
  CHEN W L, PAN G W, WANG M. High precision positioning method for aircraft fuselage panel based on force/position control[J]. Acta Aeronautica et Astronautica Sinica201940(2): 522403 (in Chinese).
20 JONSSON M, OSSBAHR G. Aspects of reconfigurable and flexible fixtures[J]. Production Engineering20104(4): 333-339.
21 RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures [J]. Procedia Technology201415: 447-455.
22 REID E. Development of a mobile drilling and fastening system based on a PKM robotic platform[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, 2015: 2059-2070.
23 BERTELSMEIER F, DETERT T, UBELHOR T, et al. Cooperating robot force control for positioning and untwisting of thin walled components[J]. Advances in Robotics & Automation20176(3): 1000179.
24 QU L Q, PAN G W, CHEN W L. Reasonable drive selecting of parallel mechanisms based on screw theory[J]. World Journal of Engineering and Technology20153(3): 259-265.
25 王伟, 张春亮, 白新宇, 等. 基于并联构型的飞机装配调姿定位机构精度研究[J]. 航空制造技术201760(S1): 60-64.
  WANG W, ZHANG C L, BAI X Y, et al. Positioning accuracy research of assembly tooling for aircraft based on parallel mechanism[J]. Aeronautical Manufacturing Technology201760(Sup 1): 60-64 (in Chinese).
26 文科, 杜福洲, 张铁军, 等. 舱段类部件数字化柔性对接系统设计与试验研究[J]. 航空制造技术201760(11): 24-31.
  WEN K, DU F Z, ZHANG T J, et al. Research on design and experiment for digital flexible aligning system of cabin components[J]. Aeronautical Manufacturing Technology201760(11): 24-31 (in Chinese).
27 ZHAO D, BI Y B, KE Y L. Kinematic modeling and base frame calibration of a dual-machine-based drilling and riveting system for aircraft panel assembly[J]. The International Journal of Advanced Manufacturing Technology201894(5): 1873-1884.
28 BORRMANN C, WOLLNACK J. Enhanced calibration of robot tool centre point using analytical algorithm[J]. International Journal of Materials Science and Engineering20153(1): 12-18.
Outlines

/